
Project No. 64

lektor post | Project No. 64 | 1

lektor post

if it is possible — under certain circumstances
— to drive a MOSFET gate directly from a TTL
output, this option is not used here. Alterna-
tively we use a pair of cheap, complementary
small-signal transistors, T1 and T2, to drive
our MOSFET’s gate. Other types of comple-
mentary small-signal transistors should be
okay for this function too, as gain and transi-
tion frequency are not really critical here. By
the way, the software becomes easier because
a TTL High level (logic 1) corresponds with
maximum power delivered by the MOSFET. An
external 12-V, 2-A DC supply is used to power
the circuit including the heater resistor, simply
because I had one available in my drawer!
The interface between the Arduino and
the power governor was built on a piece of
stripboard.
The two “probes” (LM35 and DUT/NTC) and

The project was designed after suffering
a malfunction in the domestic solar water
heater. The approach is based on the Joule
effect: a small metal plate thermally coupled
to the DUT (device under test) is heated to a
constant, adjustable temperature. After sta-
bilization you can measure the sensor’s char-
acteristics at different temperatures set with
the help of your Arduino Uno.

Electronics and mechanics
The jig is made of a piece of aluminum profile,
to which a 15-Ω power resistor is secured.
As shown in the schematic in Figure 1, an
N-channel power MOSFET driven by an Ardu-
ino PWM signal (Pulse Width Modulation) sup-
plies power to this “heater” resistor. A signal
level converter is required between the Ardui-
no’s TTL output and the MOSFET’s gate. Even

Test Jig for Temperature
Probes & Sensors
Arduino Uno controlled

This Arduino-driven fixture enables the essential characteristics of many
types of temperature sensor including silicon, PTC, and NTC to be measured
for comparing to the factory specs. It also helps you identify a faulty sensor,
or match a pair of them.

By
Pierre Commarmot
(France)

Project No. 64

lektor post | Project No. 64 | 2

lektor post

is appended to this .POST article as Listing 1,
and can be downloaded from [3].
Let’s see what Arduino is doing. First, it gets
the reference temperature requested for the
measurement by reading a potentiometer.
Next, using the LM35 sensor connected on
another ADC channel, it measures the actual
temperature of the test jig. The LM35 yields
a voltage that’s proportional to temperature
at a 10 mV/°C rate with good precision of
±0.5 °C. The power (i.e. heat) required to
achieve this temperature is then computed
by means of a rudimentary software-PID
controller (proportional-integral-derivative).
Two modes are used: the ‘aggressive’ one
to converge rapidly, and the ‘conservative’
one when the actual temperature gets very
close to the target level. Conservative mode
avoids slow long wave oscillations around the
PID balance point. I did plan to automatically
measure the device under test, but eventu-
ally the function was not implemented in this
software version — you have to read out the
DUT with a digital multimeter.
Next! Arduino sends the following parame-
ters roughly every 500 ms, separated by a
comma (,) and terminated with a carriage
return (CR):
• Reference temperature requested (float-

ing point; range 0 to 100 °C)
• Actual jig temperature from LM35 (inte-

the 15-Ω power resistor are jointly secured
to a small piece of aluminum, which acts as
a hotplate. This assembly method reduces
errors due to temperature gradients of the jig
to a minimum. The sensor under test and the
LM35 reference sensor must be mounted very
closely together. In order to reduce noise, a
1-μF capacitor, C1, filters the LM35’s output
signal. The target temperature of the jig is
set by a potentiometer directly connected to
the Arduino’s 10-bit ADC input.

Software
In terms of software there’s absolutely no
need here for muscle flexing, and we use a
few pins of the Uno only. If you want to use
a different Arduino model, just check that the
wiring is correct according to input/output
function of your Arduino board.
The software is composed of two parts: one
written with the free Arduino IDE [1] and
the other, developed with Processing [2] for
the host computer to display data. Please
note that I worked with releases of Arduino
IDE and Processing current as of September
2014. Being a long time Mac user, the Pro-
cessing software came naturally; I suppose
some adjustments (‘platform porting’) should
be done for Linux or Windows.

The Arduino sketch developed for the project

Figure 1.
Schematic of the test jig for
temperature sensors.

ARDUINO

MacBook

PCB

+5VUNO

GND

A1
A0

~3

T3

IRF520R4

10
k

R3

47
k

R2

10
0k

R1
4k7

T2

BC557

T1

BC547

R5
15

LM35D1
NTC
–tº

C1

1u

P1

47k

DUT

REFERENCE 0º

S1

230V
115V

12V / 2A

+12V

USB

Joule’s Law (was first)

says that around 1840, the heat production Q
resulting from current I flowing in a conductor
with resistance R and consequently dropping a
voltage U was observed to equal

Q = P t = U I t = R I2 t [joules/second]

which in the domain of electronics is the
familiar

P = I2 R [watts]

Project No. 64

lektor post | Project No. 64 | 3

lektor post

lent “G4P” website for broadcasting a wide
knowledge about Processing!

Using the jig
Connect the Uno board to your (MacBook)

computer, and launch Arduino IDE. Define
your board type and which serial port is used,
then open the file ‘TestSondeTemp.ino’ and
transfer it to your Uno.
Wire the Uno as indicated here. You now have
to create the display application on your host
computer. Launch Processing and open ‘Test-
SondeTemp.pde’; you may create an autono-
mous application, or choose to launch it from
Processing IDE.

ger; range 0 to 100 °C)
• Computed heating power (integer; range

0 to 100%)
• DUT temperature (floating point, range 0

to 100°C)

The USB cable between host computer and
the Arduino (Uno) carries supply power for
the Arduino and the LM35, as well as the
transmitted parameters. The small Process-
ing software only draws a rectangle includ-
ing four graded sliders, each one displaying
a parameter. When a string is received, each
parameter is extracted and tied to its slider;
when done, a special task is launched which
handles computer events. Thanks to the excel-

Figure 2.
The author’s jig in use on
his workbench.

Listing 1. Arduino Sketch for Temperature Sensor Test Jig (Ref. [3])

// Test bench PID temperature regulation
// Inputs: potentiometer temperature reference (0..5V) input A0
// bench temperature sensor LM35 (0..5V) input A1
// Outputs: heating PWM command out 3
// USB port: data output every 500 ms

// Check Github website
#include <PID_v1.h>

double Consigne, Input, Output;

// Aggressive and conservative settings
double aggKp=4, aggKi=0.2, aggKd=1;
double consKp=1, consKi=0.05, consKd=0.25;

PID MonPID(&Input, &Output, &Consigne, consKp, consKi, consKd, DIRECT);

// Wiring
int BrocheRefTemp = 0; // potentiometer on A0
int BrocheSondeRef = 1; // LM35 on A1
int BrocheSondeTest = 2; // DUT on A2, not used
int BrocheMosFET = 3; // MOSFET gate

// Variables initialisation
int PotValue; // Potentiometer value
int ValPot1024 = 0; // 0-1023 PotValue
int ValPWM256 = 0; // PWM output value

// Defining inputs-outputs, initialisation
void setup() {
 Serial.begin(19200);
 pinMode(BrocheRefTemp, INPUT);
 pinMode(BrocheSondeRef, INPUT);

Project No. 64

lektor post | Project No. 64 | 4

lektor post

Web Links

[1] Arduino IDE: www.arduino.cc/en/Main/
Software

[2] Processing: https://processing.org/
download/?processing

[3] Project software: www.elektormagazine.
com/articles

The ‘ArialMT-20.vlw’ font must be present in
a ‘Data’ file at the same level as the source
file ‘TestSondeTemp.pde’.
After carefully checking the wiring and the
component connections, you can now power
on the device, set a temperature, wait under
two minutes for thermal stabilization to be
reached and then measure the DUT with a
multimeter.
A graphical representation offers a very quick
glance at the characteristics of your DUT. Have
fun!

(150062)

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/Software
https://processing.org/download/?processing
https://processing.org/download/?processing
http://www.elektormagazine.com/articles
http://www.elektormagazine.com/articles

 pinMode(BrocheSondeTest, INPUT);
 pinMode(BrocheMosFET, OUTPUT);
 MonPID.SetMode(AUTOMATIC);
 }

 void loop() {

 // Getting reference temperature
 PotValue = analogRead(BrocheRefTemp);
 PotValue = map(PotValue, 0, 1023, 0, 100);
 Consigne = double(PotValue); // Target temperature
 Serial.print(float(PotValue));
 Serial.print(“,”);

 // LM35 probe reading
 ValPot1024 = analogRead(BrocheSondeRef);
 ValPot1024 = map(ValPot1024, 0, 205, 0, 100);
 Input = ValPot1024;
 Serial.print(float(ValPot1024));
 Serial.print(“,”);

 // Computing required power
 double gap = abs(Consigne-Input); // Target temp distance
 if(gap<10)
 { // approaching target temp we use conservative parameters
 MonPID.SetTunings(consKp, consKi, consKd);
 }
 else
 {
 // far from target temp, use aggressive parameters
 MonPID.SetTunings(aggKp, aggKi, aggKd);
 }

 MonPID.Compute();
 ValPWM256 = int(Output); // output = 1 -->Max power
 if (Consigne<21) {
 ValPWM256 = 0;};
 analogWrite(BrocheMosFET, ValPWM256);
 Serial.print(map(ValPWM256, 0, 255, 0, 100));
 Serial.print(“,”);

 // DUT reading
 ValPot1024 = analogRead(BrocheSondeTest);
 ValPot1024 = map(ValPot1024, 0,1023, 0, 100);
 Serial.print(float(ValPot1024));
 Serial.println(“”);

 delay(500);
 }

Project No. 64

lektor post | Project No. 64 | 5

lektor post

