
•Post Project No. 28

elektor post | Project No. 28 | 1

successfully reaches the end of his/her track
and touches his/her Finish point there, he/
she wins the game. A short melody sounds
and all the LEDs will blink.

The circuit –
from basics to schematic
The main parts of the circuit are the loops,
the wire track, the fault indicator and the
variable-sound buzzer. This overall size of
the circuit depends on the number of play-
ers playing the game. Our version supports

The game as we want it
Wire Loop is a dexterity-only game, meaning
it has nothing to do with intelligence, cheats,
or strategic skills. Our Arduino’d version is
designed for up to four players, each with
his/her own loop to “pass the test”.

The goal is to pass the loop from the begin-
ning of the track to the finish without touch-
ing the track wire. If the player touches the
track wire a fault tone sounds, and a status
LED identifying the player lights up. If a player

Wire Loop Game
Nerves of Steel –and Arduino in control

Here’s a multi-player (max. 4) version of that nerve-racking game called
Wire Loop where contestants have to pass a metal loop around a stretch
of purposely warped wire or tubing without touching the ‘track’. First one
to finish without setting off the dreaded FAULT!! alarm, wins. Inspired by a
circuit from Elektor’s dim analog past we decided to add an Arduino Uno to
make it suitable for all you Bitwise People out there.

By Sunil Malekar
(Elektor Labs India)

•Post Project No. 28

elektor post | Project No. 28 | 2

Referring to the schematic in Figure 1, the
heart of this project is Arduino Uno R3 board
using an ATmega328P microcontroller. The
microcontroller GPIO pins are connected to
our dexterity game shield by way of connec-
tors K1, K2, K3, K4 of the Arduino “shield”.
K1, K2, K3 and K4 link the winners’ “Finish”
points and loops using Arduino microcontroller
pins (Loop1, Loop2, Loop3, Loop4 and Win1,
Win2, Win3, Win4) fitted with external pull-ups
(R11, R12, R13 and R14) and pull-downs (R7,
R8, R9 and R10). K10 is used to connect the
solid track wire to Ground. The loop and win-
ner correlation is established using GPIO PINs
of the ATmega328p controller (3, 4, 6, 7, 8, 9,
A4 and A5—according to the Arduino Uno R3
schematic). The four indicator LEDs are con-
nected to Arduino microcontroller pins 13, 12,
11 and 10, which indicate individual faults when
the loop (loop1, loop2, loop3 and loop4) touch
the track wire. The buzzer generates individ-
ual tones for individual players when the loop
touches the track wire or tube. LED5 on Arduino
A0 indicates Start and Win status of the game.

up to four players—each one has a loop
which is interfaced with an Arduino micro-
controller port pin with an external pull-up
to VCC. Each participant’s personal ‘Finish’
touch point is interfaced with the Arduino
microcontroller with the help of a pull-down
resistor to GND.

The player holds the loop, which normally
produces the logic High signal. The warped
track made from stiff copper or steel wire is
connected to the GND terminal. When the
game starts the player is challenged to move
his/her loop from the start to the personal
finish point without touching the track wire.
If the player touches the track wire the logic
High signal will drop to Low. This is flagged by
the Arduino micro, which responds instantly
by lighting the respective LEDs and making
the buzzer sound. Each player has an individ-
ual buzzer sound and LED pattern. When a
player touches his/her personal ‘Finish’ point
he/she wins the game and there is a musi-
cal flourish from the Arduino microcontroller.

DI
GI

TA
L

(P
W

M~
)

ARDUINO UNO

AT
ME

GA
32

8

AN
AL

OG
 IN

RESERVED

POWER

IOREF
RESET

TX.>1

PO
W

ER

RX<0

AREF
USB

3V3

GND
GND
Vin

~10
~11

GND

5V

A0
A1
A2
A3
A4
A5

~9

12
13

2
3
4
5
6
7

8

K4

1
2
3
4
5
6

1
2
3
4
5
6
7
8

K3

1
2
3
4
5
6
7
8

K1

1
2
3
4
5
6
7
8
9
10

K2

R1
330R

R2
330R

R3
330R

R4
330R

R5
330 R

R6
100R

VCC

LED1

LED5

LED2
LED3
LED4

K5
Bz1

K6

K7

K8

K9

R7
10k

R8
10k

R9
10k

R10
10k

R11
1k

R12
1k

R13
1k

R14
1k

VCC

K1
WIRE

TRACK

0

130342-11

Loop 4

Loop 3

Loop 2

Loop 1

Win4

Win3

Win2

Win1 Figure 1.
Schematic of the Wire Loop
Game, a unique shield for
the Arduino Uno

•Post Project No. 28

elektor post | Project No. 28 | 3

the track wire, are connected on sturdy PCB
screw terminal blocks. BTW a shield is a board
that gets plugged onto the Arduino’s exten-
sion connectors. Just as in medieval Italy, a
shield kind of helps Arduino deal with things
out there in the real world.

Software
The Wire Loop Game for up to four players got
developed using an Arduino microcontroller
Board and the associated Arduino develop-

Building
The double-sided through-plated circuit board
designed for the game is shown in Figure 2.
The PCB artwork if needed can be downloaded
from [1]. Words do not do justice to the sim-
plicity of the “shield” we’re building, which
contains through-hole parts only. The resistors
and the four pinheaders are inserted at the
underside of the board, noting that the pin-
header pins can only be soldered at the PCB
top side. The wires to the player loops, and

Component List
Resistors
R1–R5 = 330Ω
R6 = 100Ω
R7–R10 = 10kΩ
R11–R14 = 1kΩ

Semiconductors
LED1–LED4 = LED, red, 5mm, e.g. Newark/Farnell

1780754
LED5 = LED, green, 5mm, e.g. Newark/Farnell #

2112108

Miscellaneous
K1,K3 = 8-pin pinheader, 0.1’’ pitch
K2 = 10-pin pinheader, 0.1’’ pitch
K4 = 6-pin pinheader, 0.1’’ pitch
K6–K10 = 2-way PCB screw terminal block, 5mm

pitch
Buzzer, e.g. Newark/Farnell #1022400
PCB # 130342

Figure 2.
Circuit board design for the
Wire Loop Game, which has
taken the form of a shield
for Arduino.

ww
w
.e
le
kt

orpcbservice.com

•Post Project No. 28

elektor post | Project No. 28 | 4

is playing on
the same pin,
the call to tone ()
will reset the frequency.
To be able to step tones and so make a
basic melody, we have to include the “pitch-
es.h” file. This file just gives you a variable
defined as a macro for every tuned note in
hertz, so we can work out basic notes. This
makes writing “songs” much easier. All the
tone notes and notation conventions can be
found in the “pitches.h” header file.

Creating musical notes
Simple notes work like a musical tone. Pitch
and duration of the notes (octaves) can be
adjusted by coding in the “pitches.h” file.
The tone note can be downloaded from [2];
the tone creation and frequency tutorials from
[3], and Arduino-specific stuff, from [4].
In the firmware some musical notes are avail-
able based on the “pitches.h” file and created
using the above links. A few commonly used
ones are listed in Table 1.

ment IDE. The Arduino code can
be downloaded free of charge
from [1].
The firmware configuration is
governed by the number of play-
ers. The individual player’s winning
Finish touch point, fault indicator LED,
and the buzzer to loudly reveal “FAULT” all
are configured with Normal GPIO Pins of the
Arduino microcontroller.
A function identified as tone () enables
Arduino to play a tone through a small buzzer,
and with some extension, play music too. The
function call is as follows:

Tone (pin, frequency, duration)

or

Tone (pin, frequency)

Example:
Tone (3,440)

where
pin is the GPIO pin number the speaker/
buzzer is hooked up to;
frequency is the frequency of tone in hertz;
duration is the time in milliseconds the tone
lasts.

To stop the sound, simply code:

noTone (pin)

The tone function generates a square wave of
the specified frequency (and 50% duty cycle)
on a pin. If the duration of tone is not spec-
ified then the wave continues until a call to
noTone()occurs. The pin can be connected to
a piezo buzzer or other speaker to play tones.
Only one tone can be generated at a time. If a
tone is already playing on a different pin, the
call to tone () will have no effect. If the tone

Web Links

[1] 	www.elektor-magazine.com/post

[2] 	http://code.google.com/p/rogue-code/wiki/ToneLibraryDocumentation

[3] 	http://en.wikipedia.org/wiki/Note

[4] 	http://arduino.cc/en/Tutorial/Tone

Table 1. Musical Notes

Constant Name Frequency (Hz)

NOTE_B2 123

NOTE_C3 131

NOTE_CS3 139

NOTE_D3 147

•Post Project No. 28

elektor post | Project No. 28 | 5

Arduino programming
The Arduino Uno board can be programmed
by the Arduino IDE itself using its internal
bootloader. Here we have programmed the
Arduino Uno using an external programmer.
When using an external programmer you have
to set Them Notorious Fuse Bits—the config-
uration should follow Figure 3.

Playtime!
Once the assembly is done, the Arduino is
powered up with the USB/DC 12 V power
adaptor. Initially LED5 will blink continuously,
indicating Game On! The player reaching
the end of his/her track without touching is
declared Winner and honored by the corre-
sponding LEDs and his/her musette from the
buzzer. A new game is started by pressing
the Reset button on the Arduino Board.

(130342)

Figure 3.
If you use and external programmer, be advised to adhere to these Fuse Bit settings.

