
Elektor•Post Project No. 25

elektor post | Project No. 25 | 1

Just in case you missed Thijs Beckers’ intro-
duction to the BBB in Elektor’s December 2013
edition [1], Table 1 has a quick summary
of its capabilities. By default the BBB comes
preinstalled with the Ångström Linux distri-
bution. BBB’s doghouse it at [2].

Enough hardware
to throw a stick at
The BBB is seriously equipped for your hard-
ware projects. It has a doggy bag full of GPIO,
analogue, PWM and serial interfaces. The BBB
has two expansion headers, P8 (Expansion

BeagleBone Black,
The Sequel
Part 1: BBB Hardware

If you’ve already got a Raspberry Pi and need more I/O or you’ve got an
Arduino Due and want more processing speed then the BeagleBone Black
may be what you’ve been looking for. In this our first .Post on the Beagle-
Bone Black (or just BBB) we’ll be looking at its hardware expansion capa-
bilities. After we looked at its hardware we’ll write ourselves the traditional
“Blinky” LED program as our first program.

By Tony Dixon (UK)

Table 1. BeagleBone Black Summary.

CPU Sitara AM3359AZC100 ARM Cortex-A8 from TI

CLOCK 1 GHz

RAM 512 MB DD3 SDRAM

VIDEO uHDMI

STORAGE 2 GB eMMC (on-board), micro SD-CARD

PORTS Ethernet 10/100Mb, USB Host, USB Client

I/O GPIO x65, Analog x7, PWM x8, UART x4.5, I2C x2, SPI x2

COST $45

Elektor•Post Project No. 25

elektor post | Project No. 25 | 2

Script is based on JavaScript, and like Arduino
there is an IDE called Cloud9 (hey!) you can
use to create your programs.

Blinky _._._._
For our first BBB program we’ll follow the
embedded systems tradition of flashing/blink-
ing an LED. We could have used BoneScript to
program our example but instead we’ll stay
with the familiarity of C/C++. For our Blinky
program we’ll connect a LED through a 680-
ohm resistor to GPIO1_6 on connector P8.03.
On the BBB, GPIO are controlled in blocks of
32 with the blocks indexed starting from 0.
To calculate the GPIO number we multiply
the block number by 32 and add the sig-
nal number, so for our example GPIO1_6 is
1*32 + 6 = 38.
In simplistic terms Linux treats almost every-
thing as a file, including hardware ports such
UARTS and USB. Because of this feature, a
programmer can also access GPIO as if it
was a file descriptor through the Linux ker-

B) and P9 (Expansion A) with each header is
a 46-pin hobbyist friendly 0.1” pitch female
header. Table 2 shows the pins outs of the
expansion headers after power up. Other sig-
nals can be allocated to the pins, please refer
to the BBB System Reference Manual for sig-
nal mux options.
The BBB I/O are 3.3V only signals so we
should avoid connecting them to any 5-V cir-
cuits unless we want to send your BBB to the
great kennel in the sky.

Software Warehouse Dog House
As the BBB is a Linux computer we have a
choice of programming languages we can
use. As well as favorites such as C/C++ and
Python, the BBB has its own language Bone-
Script. BoneScript was first found on the BBB’s
older brothers, BeagleBoard, BeagleBoard-XM
and the original BeagleBone.
BoneScript is a Node.js based library, which
features many familiar Arduino-like function
calls to interact with the BBB hardware. Bone-

SIGNAL P8 SIGNAL

GND 1 2 GND

GPIO1_6 3 4 GPIO1_7

GPIO1_2 5 6 GPIO1_3

TIMER4 7 8 TIMER7

TIMER5 9 10 TIMER6

GPIO1_13 11 12 GPIO1_12

EHRPWM2B 13 14 GPIO2_26

GPIO1_15 15 16 GPIO1_14

GPIO0_27 17 18 GPIO2_1

EHRPWM2A 19 20 GPIO1_31

GPIO1_30 21 22 GPIO1_5

GPIO1_4 23 24 GPIO1_1

GPIO1_0 25 26 GPIO1_29

GPIO2_22 27 28 GPIO2_24

GPIO2_23 29 30 GPIO2_25

UART5_CTS 31 32 UART5_RTS

UART4_RTS 33 34 UART3_RTS

UART4_CTS 35 36 UART3_CTS

UART5_TXD 37 38 UART5_RXD

GPIO2_12 39 40 GPIO2_13

GPIO2_10 41 42 GPIO2_11

GPIO2_08 43 44 GPIO2_09

GPIO2_6 45 46 GPIO2_07

SIGNAL P9 SIGNAL

GND 1 2 GND

3.3V 3 4 3.3V

5V 5 6 5V

5V_SYS 7 8 5V_SYS

PWR_BUTTON 9 10 SYS_RESET

UART4_RXD 11 12 GPIO1_28

GPIO4_TXD 13 14 EHRPWM1A

GPIO1_16 15 16 EHRPWM1B

I2C1_SCL 17 18 I2C1_SDA

I2C2_SCL 19 20 I2C2_SDA

UART2_TXD 21 22 UART2_RXD

GPIO1_17 23 24 UART1_TXD

GPIO3_21 25 26 UART1_RXD

GPIO3_19 27 28 SPI1_CS0

SPI1_D0 29 30 SPI1_D1

SPI1_SCLK 31 32 AVCC

AIN4 33 34 AGND

AIN6 35 36 AIN5

AIN2 37 38 AIN3

AIN0 39 40 AIN1

GPIO_20 41 42 GPIO_7

GND 43 44 GND

GND 45 46 GND

Table 2. BeagleBone Black Expansion Pinouts; P8, P9.

Elektor•Post Project No. 25

elektor post | Project No. 25 | 3

g++ blinky.cpp -o blinky

Once compiled if we’ve had no compilation
errors we can run our program by typing:

./blinky

We should see our LED flashing on and off at
a leisurely once a second. As you can see,
“Beware of the Dog” is not terribly fitting in
case of the BeagleBone Black.

(130472)

Weblinks

[1] Enter BeagleBone Black,
Elektor December 2013,
www.elektor-magazine.com/130279

[2] Beagle Website: http://beagleboard.org

nel. We can us the following file descriptors
to access the GPIO:
/sys/class/gpio/export
/sys/class/gpio/gpio38/direction
/sys/class/gpio/gpio38/value
/sys/class/gpio/unexport

First we’ll start a terminal session
and then start the nano editor. In the
terminal type:
nano blinky.cpp

Write or copy the code shown in the
Listing 1 appended at the end of this
article. Once finished, save the program
by pressing Ctrl+X, Y and ENTER to
confirm saving the program.
Once saved, in our terminal we can compile
the C/C++ program by typing:

Listing 1. blinky.cpp

#include <stdio.h>
#include <unistd.h>

using namespace std;

int main() {
FILE *export_file = NULL;
FILE *IO_dir = NULL;
char str_low[] = "low";
char str_high[] = "high";
char str_port[] = "38";

// Open Port
export_file = fopen ("/sys/class/gpio/export", "w");
fwrite (str_port, 1, sizeof(str_port), export_file);
fclose (export_file);

 while (1) {
 IO_dir = fopen ("/sys/class/gpio/gpio38/direction", "w");
 fwrite (str_high, 1, sizeof(str_high), IO_dir); // pin = HIGH
 fclose (IO_dir);
 sleep (1);

 IO_dir = fopen ("/sys/class/gpio/gpio38/direction", "w");
 fwrite (str_low, 1, sizeof(str_low), IO_dir); //pin = LOW
 fclose (IO_dir);
 sleep (1)
 }

}

