
•Post Project No. 24

elektor post | Project No. 24 | 1

other color you like) that will flicker in rhythm
with the crackling and sputtering noises of
the virtual fire. In fact the device comes with
a small (but loud) amplifier that plays the
sound of a real fireplace. The mp3 sound file
can be downloaded from [1]; if you do not
like it, there’s tons more on Youtube.

Spot-on for the Festive Season upon us now,
here is a device that can simulate a burning
fireplace to a fair degree. It needs 230-V (US:
115-V) light bulbs (or anything that is dim-
mable). You can use a red lamp to create a
deep red background (which is not dimmed),
plus one yellow and one white lamp (or any

Impress-4-Less
with the
Elektor Virtual Fireplace
Where there’s no smoke
there’s PIC & mp3

A softly burning and quietly crackling fireplace has imminent attraction to
people and pets, but not everyone can afford to have the real thing in their
living room. So without further ado here’s an all-embedded, all-mp3 alter-
native to smoke, odors, flying embers and wood cleaving (out there in the
cold). Although not generating any significant heat, the project ends all of
your will-it-burn-in-time anxiety.

By Piero Di Stefano
(Canada)

•Post Project No. 24

elektor post | Project No. 24 | 2

to the AC powerline while the yellow and white
lamps are driven by their respective triacs Tri1
and Tri2, with optocouplers IC5 and IC4doing
the interfacing to the microcontroller.
A good old LM386 audio power amplifier IC
drives an 8-ohm loudspeaker up to an output
power of about 500 mW. A volume control is
provided with trimpot P1. The other control,
P2, may seem odd here but does serve a
purpose—see the author’s notes on it in the
mikroC source code listing.
The DC power supply is conventional around
a 3.3 V regulator, IC3. The unregulated sup-
ply voltage of about 8 volts is used to power
the audio amplifier IC only. All other devices
run off 3.3 volts.
The microcontroller is made aware of the
zero-crossing instants of the powerline voltage
by means of transistor T3. This timing infor-
mation is essential to make the triacs conduct
at the right instant and so control the volt-
age reaching the lamp while prevent massive
electrical noise on the lamp lines. The lamp

How it works
Looking at the circuit diagram in Figure 1,
the audio file is stored on a memory card
and played back by an mp3 sound mod-
ule, SoundModule1 or 2. The author used
the Tenda mp3 player, which gets connected
as “SoundModule1”. Elektor Labs however
purchased and mounted the type WTV020-
SD-mini MP3 player and then connected the
device as ‘SoundModule2’. SoundModule1
and SoundModule2 have slightly different
PCB positions reserved for them.
During boot-up the micro tells the mp3 mod-
ule to play the first file, and the BUSY line
(pin 15) goes LOW until file plays. When the
playback is over, the BUSY line goes High for a
moment in order to replay the file. The Micro-
chip 12F683 (IC1) sends the Play command to
the mp3 module (actually just a pulse) over
and over using the levels detected on GP0.
Hooray the 12F683 is a DIP-8 device.
The lamp flicker is created by the micro and
two triacs. The red lamp is connected straight

Figure 1.
The Virtual Fireplace is the
Internet-Age equivalent of
wood cleaving, fire starting,
gasoline pouring, smoke,
damp newspapers and the
excruciating wait for a good
fire. It lacks the ability to
generate much heat though.

K1

K2

K3

K4

TR1

F1

1A R11

0R

R9

0R

R10

0R B1

R6

4k
7

D1
1N4001

LP2950CZ-3.3
IC3

C1

100n

+3V3

C3

470u
16V

TRI1

BT138H

TRI2

BT138H

R8
220R

R7
220R

MOC3022M
IC5

6

4

1

2
1

MOC3022M
IC4

6

4

1

2
1

GP2/AN2/T0CKI/INT/COUT/CCP1

GP0/AN0/CIN+/ICSPDAT/ULPWU
GP1/AN1/CIN–/VREF/ICSPCLK

GP4/AN3/T1G/OSC2/CLKOUT
GP5/T1CKI/OSC1/CLKIN

GP3/MCLR/VPP

PIC12F683P

IC1
VDD

VSS

7

1

2

8

5

3
4

6

+3V3

R4

10
0R

R5

10
0R

T3

BC547

R2

10
0k

+3V3

R1

10
0k

C5

22u 16V

P1

100k

C6

100n

C4

220u
16V P2

100R

K5
1

2

R3

1k

LM386

IC2

2

3

5

6

4

1

7

8

LS

8
1W

PWM_OUT

RESET

SoundModule1

PREV

BUSY

DCLK

PLAY
NEXT

3.3V

SPK+
SPK–

VCC

DIN

GND

10
11
12

NC 13
14

5

1
2
3
4

6
7
8
9

PREVIOUS

AUDIO_L

SoundModule2

WTV020-SD-mini

RESET

VOL–

SPK–

VOL+

SPK+

PLAY

NEXT

BUSY

GND

VDD

NC

NC

NC

NC
10
11
12
13
14
15
16

5

1
2
3
4

6
7
8
9

+3V3

Mains
230V
(115V)

230V
(115V)

LA1

LA2

LA3

230V
(115V)

230V
(115V)

Red

Yellow

White

115V

115V

230V
C2

100n

130274 - 11

PLAY

BUSY

11
5V 6V

11
5V 6V

PL
AY

BU
SY

•Post Project No. 24

elektor post | Project No. 24 | 3

parts are involved. The result is pictured in
Figures 3 and 4.
CAUTION. The powerline Live (L) potential
exists on several PCB tracks, solder points,
screws and component terminals on the
board, hence the board and any wiring,
devices or equipment connected to it
must never be touched when in opera-
tion. Also, the board MUST be built into an
approved non-metallic enclosure, observing
all regulations and precautions for electrical
safety.

Software: it’s all free
The firmware was written using mikroC Free
Edition from Mikroelektronika and is less than

dimming method is called phase angle control.
The component values and the transformer
primary connections shown in in the sche-
matic are for 230 VAC 50 Hz grids. To adapt
the circuit to 115 VAC 60 Hz operation, install
the 0-Ω jumpers R9, R11, and change fuse
F1 to 2 A, slow. Change: R7, R8 to 100 Ω.

Build it
Tim at Elektor Labs designed a spaciously
laid out and electrically safe printed circuit
board for the project, see Figure 2. The board
also accommodates the 2 x 6 V power trans-
former. Using the parts list and the photos
in this article building the project should not
pose problems as no SMD or other miniature

COMPONENT LIST
Resistors
(0.25W unless otherwise stated)
R1,R2 = 100kΩ
R3 = 1kΩ
R4,R5 = 100Ω
R6 = 4.7kΩ
R7,R8 = 220Ω
R9,R10,R11 = 0Ω or wire bridge (see text on

changes for 115V grid voltage)
P1 = 100kΩ trimpot
P2 = 100Ω trimpot 0.5W

Capacitors
C1,C2,C6 = 100nF 50V
C3 = 470µF 16V
C4 = 220µF 16V
C5 = 22µF 16V

Semiconductors
B1 = bridge rectifier, e.g. Vishay type

2W005G-E4/51; Newark/Farnell # 1497581
D1 = 1N4001
IC1 = PIC12F683P-I/P, programmed, Elektor

Store # 130274-41
IC2 = LM386N-1
IC3 = LP2950CZ-3.3/NOPB
IC4,IC5 = MOC3022M
T3 = BC547
TRI1,TRI2 = BT138-800

Miscellaneous
F1 = fuse, 1A, slow (2A @ 115V)
HS1, HS2 = heatsink, 21 K/W, Fischer Tech-

nik type FK 230 SA L1, Newark/Farnell #
1892318

K1,K2,K3,K4 = PCB screw terminal block,
7.5mm pitch

K5 = PCB screw terminal block, 5mm pitch

SoundModule1 = Tenda MP3 player *
SoundModule2 = WTV020-SD-mini MP3 play-

er *
DIP6 socket for IC4 & IC5
DIP8 socket for IC1 & IC2
TR1 = power transformer, PCB mount,

2 x 115V prim., 2 x 6V sec., Block type
AVB1.5/2/6, Newark/Farnell # 1131474

Fuse holder, PCB mount, with cap
Enclosure, e.g. Hammond type 1591USBK, New-

ark/Farnell # 1426582
LS = miniature 8Ω 1W loudspeaker
PCB, V1.1, Elektor Store # 130274-1

* use either SoundModule1 or SoundModule2

1

WTV020-SD-mini

1

Figure 2.
In consideration of electrical
safety the Virtual Fireplace
is preferably built on this
printed circuit board.

•Post Project No. 24

elektor post | Project No. 24 | 4

ident architect, and Health & Safety Officers
to enjoy a real fire with wood, smoke, strong
drinks and all that. In good Christmas spirit it
did not deter us from building a state-of-the-
art ersatz though and “burning” a PIC12F683
or two instead of cleft wood logs.

 (130274)

Internet Links

[1] Mp3 file, software, PCB layout files:
www.elektor-magazine.com/130274, ar-
chive file # 130274-11.zip

[2] Author’s Virtual Fireplace on YouTube:
http://youtu.be/xK7Jj2aXOXI

[3] Elektor’s Virtual Fireplace on YouTube:
http://youtu.be/L_4yy8giTHk

2 Kbytes in size—actually there’s just over 200
words worth of executable code). Listing 1
appended at the end of this article shows the
mikroC program, which may be downloaded
free from [1]. The content of TMR0 should
match the frequency of your local grid, i.e.
50 Hz or 60 Hz, so study that listing carefully.
Our European readers at this point might care
to know that Elektor and Elektor.Post are also
published in the USA. Conversely, US and
Canadian readers should realize that an orig-
inally Canadian circuit got post engineered in
The Netherlands.
With all the microcontroller files in place,
understood, discussed, debugged, and com-
piled… inescapably there are the PIC fuse
settings to grapple with, so these appear in
summary in Figure 5. Next, burn the PIC,
not the wood.

In action and on YouTube too
The author’s Virtual Fireplace can be seen in
more or less blazing action on YouTube [2].
Elektor Labs also built their version and the
photos in this article go to show the results
of their efforts. They also shot a video of
the VF in action, with Tim explaining how it
works [3].
Although the ancient fireplaces in several
rooms in Elektor House (believed to be built
in the mid 1600’s) were professionally refur-
bished a few decades ago, the associated
chimneys are closed and it’s no longer pos-
sible or allowed by our CEO, CFO, quasi-res-

Figure 3. Assembled and tested board.

Figure 4.
Assembled board ready for
mounting in the enclosure.

Figure 5.
Before programming the
PIC, you need to get (and
set) the internal fuses right.

•Post Project No. 24

elektor post | Project No. 24 | 5

Listing 1. Virtual Fireplace MikroC source code listing.
/*
 * Project name:
 PIC12F683 Electronic fireplace
 * Piero Di Stefano, MAY 8th 2013.
 The triacs are driven generating a delay that is inversely proportional to the sound level.
 a 60Hz half-wave takes 1/30= 16.66ms to complete, so we have to handle any time between zero and

8333us.
 Here we go up to 8160, then above such a value, we keep the triac triggered. It’s impossible to

notice it.

 At 50Hz the timespan will be longer, 10ms, so we should set TMR0 prescaler to 128. That means

that TMR0 interrupt will fire every
 128*255/2000000 = 16320us

 So first thing, in the main() remember to change the following statement:
 OPTION_REG = 0b10000101; //TMR0 prescaler: 1/64

 with
 OPTION_REG = 0b10000110; //TMR0 prescaler: 1/128

 In order to limit its range between 0 and 10000us, we must use an init value for TMR0 of:

255*10000/16320 = 156.25
 Obviously we must use a smaller value, so no less than 156
 Countercheck:

 TMR0 = 156
 Tmr0 interrupt will fire every (156)*128/2000000 = 9984us

 Last important step to be taken:
 inside the TMROIF routine, we must change the following line:

 TMR0 = ADC_reading << 2;

 that prepares TMR0.
 Since we must use a minimum value of 156 for TMR0 to properly trigger the thyristor at 50Hz, we

must limit our range to 255 -156 = 99.
 I suggest to limit the ADC reading to 127, shifting its value 3 times instead of just 2 and

adding no more than 29 to it

 TMR0 = (ADC_reading << 3) + 29;

 A smaller value would give us more allowance

 So the problem should be solved.

 * Test configuration:

•Post Project No. 24

elektor post | Project No. 24 | 6

 MCU: PIC12F683
 Dev.Board: EasyPIC6
 Oscillator: Internal, 8MHz
 Ext. Modules: none

 SW: mikroC PRO for PIC
 http://www.mikroe.com/eng/products/view/7/mikroc-pro-for-pic/
 * NOTES:
 Tenda mp3 mplayback module:
http://www.google.ca/#hl=en&sclient=psy-ab&q=tenda+electronics+tdb380&oq=tenda+tdb&gs_

l=hp.3.1.0j0i22i30.848.5801.0.8070.9.9.0.0.0.0.120.811.6j3.9.0...0.0...1c.1.14.psy-ab.Cd-
q3yzoZcI&pbx=1&bav=on.2,or.r_qf.&bvm=bv.46751780,d.dmQ&fp=ca03a074a5a6f34d&biw=1017&bih=596

*/

 unsigned short dummy;
 unsigned int ADC_reading;

void interrupt()
{
 if(INTCON.T0IF)
 {
 GPIO.F5 = 1; //past some time between 0 and 8160 us, brings LOW the output
 INTCON.T0IE = 0; //disables TMR0 IRQ preventin it to fire until the next rising edge

(GPIF)
 INTCON.T0IF = 0; //clear bit
 }

 if(INTCON.GPIF)
 {
 dummy = GPIO;
 /*IMPORTANT, this is the core of the program
 First, we multiply ADC_reading by 4 to compensate for the low voltage level from the

loudspeaker.
 Can’t always amplify the mp3 file level, otherwise it will sound distorted. So keep the volume

down and change the voltage threshold
 Note that the louder the volume, the higher the number we get from the ADC, the higher value

TMR0 will be initialized at.
 So we get a smaller delay on triggering the triac and the light will appear brighter.
 */
 TMR0 = ADC_reading << 3 + 29;
 //If the sound level is all the way up to the max (at 245/255 to be precise), disable TMR0 and

set GP5 HIGH permanently,
 //it will keep the triac triggered for the whole cycle
 if (TMR0 > 245)
 {
 INTCON.T0IE = 0;
 GPIO.F5 = 1;
 } else
 {

•Post Project No. 24

elektor post | Project No. 24 | 7

 delay_us(160); //fine adjust zero-crossing synchronism, to compensate the early
saturation of the bjt and trigger the triac precisely

 INTCON.T0IE = 1;
 GPIO.F5 = 0; //triac gate LOW NOTE: GP2 is LOW to begin with, then goes high.
 }

 INTCON.GPIF = 0;
 }

}

void main() {

OSCCON = 0b01110001; //Enables 8MHz int osc (we must SUPERSEDE Project prop. dialog box in
order to get it to work)

OPTION_REG = 0b10000110; //TMR0 prescaler: 1/128
INTCON = 0b10001000; //general irq enabled + GPIF (TMR0 enabled programmatically)
ANSEL = 0x02; //AN1 enabled
CMCON0 = 0x07; //disables comparators
IOC.IOC3 = 1; //enables RBINT on GPIO.F0

trisIO = 0b00001011; //GP0 digital input (~BUSY) to replay the file, GP1 = analog input from
audio player, GP3 digital input from ZCD

GPIO = 0b00000100; //GP2 must should start high.
TMR0 = 156; //Init value

 // play mp3 file at startup
 GPIO.F2 = 1;
 delay_ms(100);
 GPIO.F2 = 0;
 delay_ms(100);

 while(1)
 {
 ADC_reading = ADC_Read(1);

 //White light bulb: when the sound level is higher, it goes on, and stays that way until next
reading.

 if (ADC_reading > 1000) GPIO.F4 = 1; else GPIO.F4 = 0;

 if (GPIO.F0) //F0 = HIGH only when device is in IDLE mode, goes LOW when playing
 {
 delay_ms(500);

•Post Project No. 24

elektor post | Project No. 24 | 8

 GPIO.F2 = 1;
 delay_ms(100);
 GPIO.F2 = 0;
 delay_ms(100);
 }

 }//end while

}// end main

