
Elektor•Post Project No. 23

elektor post | Project No. 23 | 1

For examples on how to program a PICAXE
chip (really?), please refer to the previous
article [1], or the PICAXE Manual found at
[2]. PICAXE chips and various peripherals
are available through the Revolution Educa-
tion webstore[3]. Theory behind the selec-
tion of components for electronic circuits can
be found in the second article in the PICAXE
series [1].

Déjà vu—déjà entendu
This time, the basic PICAXE setup is differ-
ent from the one used in the three previous
installments. Instead of the PICAXE 08M2
chip, the PICAXE 18M2 is used (the pinout is
shown in Figure 1). It is still powered from
the 5 V rail of an ATX power supply. The Cir-
cuits are built on the same solderless bread-
boards. Note that the download circuit bread-
board adapter (AXE029) uses the “18” jumper
setting, making the connections line up with
the download pins on 18M2 parts. In this
article, the USB-to-serial cable (Figure 2)
is used for more than just programming the
PICAXE—it will act as an interface for serial
communications between the PICAXE and a
PC. The PICAXE was programmed with LinAX-
Epad software version 1.5.0 for (Arch) Linux.
To avoid confusions, any pin number in sche-
matics refer to the physical pin number on the
chip, and pin numbers in code listings refer
to internal pin names according to Figure 1.

Bury the Hatchet,
Unbury the Axe (4)
Typing and displaying, serially

The previous articles in this series [1] brought to you by Elektor.POST
showed how to program a PICAXE chip and how to build interfacing circuits
to provide both digital and analog inputs and outputs to a PICAXE project.
Now we can also allow the PICAXE to switch and control various
other electronic circuits, and we know how to select
adequate electronic components for our own circuit
designs. Additionally, in Part 3 we explored various
uses for pulsewidth modulation (PWM), including
servo control and sound (by the way, did you rec-
ognize the tune?). This article concludes the series,
and as promised we will be adding an OLED display
and a PS/2 keyboard to a PICAXE. Finally, we will
connect the PICAXE to a PC via a serial connection.

By Wouter Spruit
(Netherlands)

Figure 1.
PICAXE 18M2 pinout.

Elektor•Post Project No. 23

elektor post | Project No. 23 | 2

and 1 stop bit per frame. The baud rate has to
be specified for the serout/serin commands.
For communications through the download
pins, the baud rate is fixed at 4800 (except
on X2 parts, for those it would be 9600).

Connecting to a PC
Connecting the download cable has been dis-
cussed in previous articles in this series [1],
but in case you missed it, the schematics from
the PICAXE manual are also presented in Fig-
ure 3. A serial connection to a PC is already
in place—it is used for downloading programs
to the PICAXE! You can use this connection to
communicate with the PC in your programs,
too. The sertxd command allows you to send
data to the PC—this works without any addi-
tional configuration. To view the data sent
through this connection, a terminal program
is required on the PC, and one is included in
the LinAXEpad software in the menu PICAXE
¨ Terminal... (F8). Data stored in a PICAXE
register, for instance b0, is sent as raw binary
data. This data is interpreted as ASCII code
[4]. To send the value stored in b0 as readable
text (i.e. a sequence of ASCII-encoded char-
acters), instead of the raw ASCII value stored
in b0, use #b0 instead (this does not always
work with the obsolete PICAXE parts though).
The code in Listing 1 tells the PICAXE to
increment the value of a register in a loop,
then send the value first as an interpreted
number (i.e. a readable sequence of ASCII

Serial communication
Most microcontrollers are able to communicate
through a serial connection. “Serial” means
the data is sent and received as a sequence
of bits through a single wire. A common stan-
dard for serial communication is RS-232 (for
instance, the serial port on a PC). The origi-
nal specifications of RS-232 describe voltages
of ±15 V, but most modern microcontrollers
ignore the voltage specified in the original
standard, only using the protocol for actual
coding and timing of serial data. A common IC
that provides “real” RS-232 communication,
including voltage, is the MAX232 IC. PICAXE
serial commands have separate modes for
regular serial communications (baud rate
starts with an “N”), and “true” RS-232 (baud
rate starts with a “T”).

Serial communication with devices such as a
PC or Raspberry Pi enables a PICAXE project
to be integrated seamlessly into other proj-
ects, with the PICAXE acting as a buffer for
any input and output circuits hooked up to
it. The following paragraph explains how to
set up a serial connection between devices,
but you can try out the examples first if you
like. The theory is useful for configuring con-
nections between parts in your own designs.
The PICAXE knows two types of serial input
and output commands. The first set is used
only on the pins (usually) connected to the
serial cable: “sertxd” for output and “ser-
rxd” for input. The second set of serout and
serin are used for serial communications on
other pins that support serial communications.
The main reason we are using the PICAXE
18M2 instead of the 08M2, is the absence of
pins for serin/serout and kbdata/kbclock
on the 08M2.

A serial connection is set-up with a number
of parameters, describing what characters to
expect and how to interpret them. All data
is sent in frames—a frame consists of (in
sequence): 1 start bit, 5 to 9 bits of binary
data, sometimes a parity bit, and (a) stop
bit(s). The parameters of a serial connection
tell the machine the number of frames per
second (i.e. “baud rate”), the number of data
bits per frame, if parity bits are used (“n” for
no), and the number of stop bits. The prop-
erties of the serial connection from and to
PICAXE are fixed at 8 data bits, no parity bit

Figure 2.
USB-to-serial cable. Looks
familiar, doesn’t it?

Figure 3.
Recapping: how to connect
the download cable.

Elektor•Post Project No. 23

elektor post | Project No. 23 | 3

the sertxd command are raw ASCII, used as
control sequences to indicate “carriage return”
and “line feed” respectively. This places the
cursor at the start of a new line.

characters), then as the raw ASCII. Because
only part of ASCII consists of readable text,
the other characters are either interpreted as
special or unprintable characters, or control
sequences. The values “13” and “10” sent in

Listing 1: PC_OUT

main:
b1=0
do
 b1=b1+1
 sertxd(“The value of #b1 is “,#b1,13,10) ‘interpret number as text
 sertxd(“The value of b1 is “,b1,13,13,10) ‘interpret number as ASCII
 pause 1000
loop
end

Listing 2: Loopback

init:
disconnect ‘PICAXE no longer scans for program downloads
main:
do
 serrxd [10000,timeout],b0 ‘wait 10 seconds for input, then goto timeout
 sertxd(“character received: “,b0,13,10)
 if b0 = “q” then
 sertxd(“q received, type quit to exit”,13,10)
 serrxd [5000,timeoutmain],(“quit”)
 goto quit
 endif
loop

quit:
reconnect
sertxd(“quit received. program done.” ,13,10)
end

timeout:
reconnect
sertxd(“Input timed out”,13,10)
‘goto main ‘only uncomment this if you know
‘how to reprogram the unconnected device!
sertxd(“Downloading of programs re-enabled.”,13,10)
end

timeoutmain:
sertxd(“no quit received within 5 sec. restarting program.”,13,10)
goto main

Elektor•Post Project No. 23

elektor post | Project No. 23 | 4

OLED 16x2 alphanumeric character display
was used, connected to the “hserial” pins of
the PICAXE. The AXE033Y comes with several
extra features (7 memory slots for pre-pro-
grammed text, functions as stand-alone clock
with optional clock module), but for now we
will use it as a simple character display. Other
serial character displays are also expected to
work with this example. Data is sent to the
display through a serial connection, encoding
of characters is ASCII again. Several ASCII
codes are interpreted as display commands,
instead of characters to display. An overview
of character codes and commands can be
found in the PICAXE Manual part 3 [6], pages
32 and 41 respectively.

Connect the serial display according to the
schematics of Figure 6. Before programming
PICAXE with relatively complicated display
code, we have to make sure the connected
display works as expected. Listing 4 shows
how to prepare the display, and how make it
show “Hello Elektor!”.
The display uses control sequences to position
the cursor. Every time a character is sent to
the display, it increments the character posi-
tion automatically. However, in order to use
the display to give feedback to the input from
a keyboard, special characters like “Back-
space” have to be coded differently. Note that

Receiving serial data through the “download
pin” connection requires more configuration,
because the pin is always in use by the PICAXE
firmware (it scans for new downloads). In
order to use it to receive serial input data,
the pin has to be “disconnected” first. No new
programs can be downloaded until the pin is
reconnected—or a soft- or hard reset is per-
formed. A timeout is available for the serial
input commands on newer PICAXE parts. The
program in Listing 2 shows how to enable
and disable serial inputting through the down-
load cable, how timeouts are used, and how
to receive a command from a PC terminal.
We will open a terminal now (just hit F8) to
communicate with the PICAXE.

Keyboard input
PS/2 keyboards send data over a serial con-
nection, but they also require a clock signal.
The pinout of a PS/2 keyboard connector is
shown in Figure 4. Several PICAXE parts have
pins marked as “kb data” and “kb clock” (pins
16 and 15 on the 18M2), meant specifically for
connection to a PS/2 keyboard. The kbin com-
mand waits for data from a keyboard (with
timeout), while the kbled command allows
control of the Scroll Lock, Num Lock and Caps
Lock LEDs on the keyboard. Note that the
kbled command will halt program execution
until a keyboard is connected. Keyboard data
is sent as scancodes. An overview of scan-
codes may be found in the kbin command
section in part 2 of the PICAXE Manual [5].
Most characters are sent as 8-bit serial data.

Now we will connect the keyboard according to
the schematics depicted in Figure 5. Because
USB keyboards are now more common than
PS/2 keyboards, some stores don’t carry them
anymore. Other stores, mostly second hand,
still sell them, often at a very low price. If
you can’t find a PS/2 connector, this step can
be improvised, for instance by cutting of the
PS/2 connector from the keyboard cable and
connecting the four wires the correct way. The
program in Listing 3 receives input from the
keyboard, and sends it to a PC, through the
download cable. F8 opens a terminal inter-
face from within (my version of) the PICAXE
programming software.

Adding a display
In this example, the AXE033Y serial/I2C

Figure 5.
Pinout of a PS/2 keyboard
connector.

Figure 6.
How to connect a keyboard.

Figure 8.
Connecting the display.

Elektor•Post Project No. 23

elektor post | Project No. 23 | 5

and the “Enter” and “Escape” keys restart
and end the program respectively.

Display memory actually consists of two lines
of 40 characters, but only the first 16 charac-
ters of every line are displayed. The common
scrolling effect can be achieved by moving
the window of visibility relative to the text
stored in memory, as demonstrated in the
“quit” function in Listing 5.

scancodes and ASCII are not directly com-
patible! An example on how to convert key-
board input in order to display it on the screen
is shown in Listing 5; the conversion has
to be done for all characters/keys you need
(the codes are not sequentially compatible!).
Connect both the display and keyboard as
described previously. The only keys enabled
are the characters “a”, “b”, “c”, “h”, “i” and
“space”; a “Backspace” function is included

Listing 3: Data from keyboard to PC

main:
do
 kbin b1’ get keyboard input
 sertxd(“Received scancode from PS/2 keyboard: “,#b1,13,10) ‘interpret
number as text
loop
end

Listing 4: Hello World Elektor!

pause 500 `allow screen to initialize first
serout B.5,N2400,(254,1) `send clear command to screen
pause 30 `wait for the screen
serout B.5,N2400,(254,128) `move screen cursor to line 1, char 1
serout B.5,N2400,(“Hello Elektor!”) `send text to display
end

Listing 5: KEYBOARD_DISPLAY

init:
pause 500 `allow screen to initialize first
gosub initscreen
serout B.5,N2400,(“Enter text:”)
gosub setcursor
gosub showcursor
do
 kbin b1
 if b1 = $1C then ‘a
 b2=97 ‘convert to lower case ASCII a
 gosub printcharacter
 elseif b1 = $32 then ‘b
 b2=98
 gosub printcharacter
 elseif b1 = $21 then ‘c

Elektor•Post Project No. 23

elektor post | Project No. 23 | 6

 b2=99
 gosub printcharacter
 elseif b1 = $33 then ‘h
 b2=104
 gosub printcharacter
 elseif b1 = $43 then ‘i
 b2=105
 gosub printcharacter
 elseif b1 = $29 then ‘space
 b2=32
 gosub printcharacter
 elseif b1 = $66 then ‘backspace
 gosub backspace
 elseif b1= $76 then ‘escape quits the loop
 goto quit:
 elseif b1= $5A then ‘enter resets the program
 goto init:
 endif
loop

quit:
gosub initscreen
gosub hidecursor
serout B.5,N2400,(“It is now safe to turn off the PICAXE”)
do
 serout B.5,N2400,(254,24) ‘ move the window left
 pause 100
loop
end

initscreen:
serout B.5,N2400,(254,1) `clear screen
pause 30
serout B.5,N2400,(254,128) `move to start of first line
symbol CURSOR_POS = b3
CURSOR_POS = 0
return

setcursor:
b4=CURSOR_POS+192 ‘192: start of second line
serout B.5,N2400,(254,b4)
return

showcursor:
serout B.5,N2400,(254,14) ‘turn on cursor
return

hidecursor:
serout B.5,N2400,(254,12) ‘turn off cursor

Elektor•Post Project No. 23

elektor post | Project No. 23 | 7

port setup” (arrow keys, enter), and type
“A” to change the device path to the path
of the USB download cable (in our case,
“/dev/ttyUSB0”). Type “E” to change the
serial speed, and use the “A” and “B” keys
to select 4800 baud. Make sure the program
expects 8 data bits, no parity and one stop
bit (8N1). Use “enter” to return to the main
menu, and select the save settings as “dfl”
(default) option. After selecting “Exit” (NOT
“Exit from minicom”), you can communicate
with the PICAXE through “minicom” (now you
can also start it with sudo minicom). If you
want to exit “minicom”, use CTRL+A, then
X, then YES (enter).

Some examples will be shown to demon-
strate how to use serial communications with
PICAXE in programs and scripts on a PC. For
this example, a bash shell under Linux was
assumed, with a tested and working serial
connection to the PICAXE. All commands
require root access. First, the serial connec-
tion properties have to be set. We should
enter stty -F /dev/ttyUSB0 speed 4800
cs8 -cstopb -parenb. To view data from the
connection, we’ll be using “cat”: cat /dev/
ttyUSB0. To get a single line into a variable:
read variable < /dev/ttyUSB0. To view the
data: echo $variable. And finally, to send
data through the connection: echo q > /dev/
ttyUSB0 (though the quit command can be
sent and received using “minicom”, the quit

Evidently, serial displays come with various
functions and options, and to cover all func-
tionalities of such displays would not fit in this
article. Details on the AXE033 display can be
found in the manual [7]. Feel free to explore
the possibilities further.

Terminal settings
In order to fully integrate the PICAXE with
an existing (or new) system—like for home
automation applications—the PC (and user)
should be able to use a serial connection to
communicate with the PICAXE, without hav-
ing to rely on the terminal program included
with the programming editor. “minicom” [8]
is a terminal program that works on Linux
and other POSIX-compatible systems (like
Mac OSX), but this example will assume
Linux. In order to use it, you have to make
sure the (module for the) serial download
cable is in use. LinAXEPad can help you
enabling the correct module for the USB-
to-serial cable (view � options � port �
AXE027 modprobe), and showing the address
of the device (probably “/dev/ttyUSB0”). To
install “minicom” on Debian systems (includ-
ing the Raspbian OS on the Raspberry Pi), we
may enter sudo apt-get install minicom
(in case we’re using Arch, then it would be
sudo pacman -S minicom). Let’s config-
ure “minicom” by entering the setup mode:
sudo minicom -s. Select the option “Serial

return

printcharacter:
if CURSOR_POS > 15 then return endif ‘only use visible character space
serout B.5,N2400,(b2)
pause 200
CURSOR_POS=CURSOR_POS+1
return

backspace:
if CURSOR_POS = 0 then return endif ‘already start of line
CURSOR_POS=CURSOR_POS-1
gosub setcursor ‘move back one space
serout B.5,N2400,(32) ‘overwrite with space character
gosub setcursor ‘set cursor to correct position
pause 100
return

Elektor•Post Project No. 23

elektor post | Project No. 23 | 8

check the PICAXE series support page at Elek-
tor.LABS [9] where, among others, all listings
are hosted in single files for your convenience.
So here ends our part, now it’s your turn.
Good luck with your projects!

(130422-I)

Internet Links

[1] “Bury the Hatchet, Unbury the Axe” (1, 2
and 3), Elektor.POST Projects Nos. 8, 16
and 19.
www.elektor-magazine.com/extra/post

[2] www.picaxe.com/Getting-Started/
PICAXE-Manuals

[3] www.techsupplies.co.uk/PICAXE

[4] www.asciitable.com

[5] www.picaxe.com/docs/picaxe_manual2.
pdf

[6] www.picaxe.com/docs/picaxe_manual3.
pdf

[7] www.picaxe.com/docs/axe033.pdf

[8] http://linux.die.net/man/1/minicom

[9] www.elektor-labs.com/PICAXE

command does not seem to work if sent using
echo in bash). To summarize, a bash script
to communicate with a PICAXE (programmed
with the code from Listing 2 with the goto
main line uncommented in the timeout sub-
routine), is presented in Listing 6. Running
the script requires the executable flag to be
set (thus, chmod +x scriptname.sh).

Over 2 U now
We know how to make a PICAXE chip talk to
peripherals through a serial connection! Now
it’s also possible for a PICAXE project to make
use of an OLED display to show data, and
to receive user input from a PS/2 keyboard.
Two-way communication with a PC through
the USB-to-serial download cable allows for
easy debugging of PICAXE programs with the
terminal application included in the PICAXE
programming editor (or equivalent software).
Through a serial connection, the PICAXE can
be used to control your own interfacing elec-
tronics, possibly through a web interface, on
a PC or a Raspberry Pi. The PICAXE system
allows us to build complex systems, like home
automation and robotics, very quickly and at
a low cost. With the obvious exception of code
and functionality provided by PICAXE-specific
software, the principles shown in this series
are also applicable other types of microcon-
troller. For additional resources you may also

Listing 6: BASH_SERIAL

#!/bin/bash
#run as root.
export DEVICE=’/dev/ttyUSB0’ #the serial device to use
#initialize
echo setting up device $DEVICE
stty -F $DEVICE speed 4800 cs8 -cstopb -parenb
echo waiting for input...
read INPUT < $DEVICE
echo received: $INPUT
sleep 1
echo sending a “q” character
echo q > $DEVICE
echo waiting for response...
read INPUT < $DEVICE
sleep 1
echo response: $INPUT
echo done

