
Elektor•Post Project No. 21

elektor post | Project No. 21 | 1

ware circuitry into their design and more likely
to be solving the problem in software with
a microcontroller. Even for relatively simple
tasks, their low cost and flexibility means that
microcontrollers should never be ruled out.
The complete software for this design using an
AVR controller (see below) is written in the
popular Bascom-AVR [1] language. The orig-
inal version 1.0 of the Simple Sound Effects
featured 34 years ago was designed to pro-
duce a rising tone which switches back to a
low tone when it reaches a maximum. The
rate of increase is influenced by the value of
a preset pot.

The same signal is now produced in this
Simple Sound Effects 2.0 version using an
ATtiny45. A preset variable resistor applies

What we can’t see from the circuit diagram in
Figure 1 is how much hardware and wiring
of the original design containing counters and
inverters has been saved. The 21st century
version does the same job in software and
uses little more than just an 8-pin ATtiny45
microcontroller instead of the clever feed-
back counter design of the original circuit. The
design also uses a single transistor buffer at
the output to increase the level of annoyance
produced from the small 8-Ω loudspeaker. A
trimpot is included in the design to give some
degree of frequency adjustment of the gen-
erated rumpus.

Software
Engineers these days are less likely to spend
their time working out how to integrate hard-

Simple Sound Effects 2.0
More noise, fewer components
In the May 1979 edition of Elektor we published a “Simple Sound Effects”
unit. The author was rightly proud of the design which used a CD4040
counter, a CD4049 Hex inverter and a few odds and ends. Anyone who con-
sidered building the circuit all those years ago will be happy to know that a
newer version is now available. Thanks to the marvels of modern technol-
ogy we can now make the same sort of racket but with fewer components.
That’s progress!

By Friedrich Lischeck
(Germany)

Elektor•Post Project No. 21

elektor post | Project No. 21 | 2

flash), it just so happened that an ATtiny45
was available at the time. The free demo ver-
sion of the Bascom-AVR compiler is used to
compile the program, this version is good for
programs resulting in a compiled code of up
to 4 KB. When it comes to flashing the micro-
controller using either a home brew or off-
the-shelf programmer be sure to remember
to define the type of microcontroller you are
using. Don’t forget also to set up the fuses;

a DC voltage level between 0 and 5 V to the
analog input ADC.1. The A/D converter in
the chip converts the DC level into a digital
value in the range of 0 to 1023. The value
produced is used to generate the frequency
‘Fg’. Timer0 is used here; each time it over-
flows it generates an interrupt which calls the
interrupt routine ‘Oszillator’. In this routine
the timer is loaded with a new value and the
digital output PB.4 is toggled. The output sig-
nal produced is a symmetrical square wave.
Each interrupt also increments the variable
‘Fd’ and then checks if it has reached 1000,
if it has it sets it back to 100.
In the main program the ADC value is used to
calculate the Preload and value of ‘F’: ‘Fd’ is
added to the value ‘Fg’ produced by the ADC
from the pot position. The result is a frequency
somewhere between 200 Hz and 4 kHz, which
then rises by a value of around 1000 Hz before
it gets reset to the start value again.

Start value
Here we look at how the start value ‘preload’
of the timer is calculated. The time period ‘T’
of the 8-bit timer is derived as follows:

T = Tmax – Preload * Tclk

Preload can only have a value in the range
of 0 and 255. ‘Tclk’ is derived from the
microcontroller’s clock signal and is divided
down according to the prescaler setting
(1/8/64/256). ‘Tmax’ is the maximum period
which can be achieved with the timer:

Tmax = Prescale * 256 / f

where ‘f’ is the clock frequency, substitut-
ing we get:

Preload = (Tmax – T) / Tclk

and

Preload = (Tmax – 1 / 2 * F) / Tclk

Here ‘F’ is the frequency to be generated and
‘T’ is the corresponding period divided by two.

And finally
The resulting code is so small it only takes up
a fraction of the available flash memory space.
It will also happily run on an ATtiny25 (2 KB

BT1

9V

S1

C1

100n

C2

100n

78L05
IC1

ATtiny45
PB2/ADC1

PB5/RST

IC2
PB1

PB0

PB3 PB4

VCC

GND

8

4

7

1

13

2

2 3

6

5P1

10k

R1

10
k

R3

56
R

R2
5k6

T1

BC547

LS1

8

130209 - 11

Figure 1.
The Simple Sound Effects
2.0 circuit is a lot simpler
than the 1979 version.

Figure 2.
The ATtiny45 fuse setup.

Elektor•Post Project No. 21

elektor post | Project No. 21 | 3

nents can be easily accommodated on a small
square breadboard—use an IC socket for IC2.

 (130209)

Internet Link

[1] 	Bascom-AVR: www.mcselec.com

[2] 	www.elektor-magazine.com/130209

screen shot Figure 2 shows the fuse set-
tings as displayed in Atmel Studio. Note that
the clock divider ‘CKDIV8’ is disabled and
the internal 8 MHz oscillator is selected with
an extended start time. This prevents errors
resulting in too low or no sound output. The
source code and pre-compiled Hex file are
free to download from [2].

There isn’t too much to say about circuit
construction, the small number of compo-

The Code

‘Simple Sound Effects Tiny45
$regfile = “attiny45.dat”
$crystal = 8000000

‘Pin B.4 is output:
Ddrb = &B00010000
‘Start with output low:
Portb.4 = 0

Dim Preload As Byte
Dim F As Word

Component
List
Resistors
(all .25W)
R1 = 10kΩ
R2 = 5.6kΩ
R3 = 56Ω
P1 = 10kΩ trimpot

Capacitors
C1,C2 = 100nF 16V

ceramic

Semiconductors
T1 = BC547
IC1 = 78L05
IC2 = ATtiny45,

programmed

Miscellaneous
DIL-8 socket for IC2
Battery clip for 9V

battery
B = 9V Battery
S1 = switch, 1 make

contact
LS = loudspeaker, 8Ω

0.5W

Elektor•Post Project No. 21

elektor post | Project No. 21 | 4

Dim Fg As Word
Dim Fd As Word
Dim Tmax As Single
Dim Tclk As Single
Dim H As Single

On Timer0 Oszillator
Config Timer0 = Timer , Prescale = 256
Enable Timer0
Enable Interrupts
Preload = &H64: ‘100 Hz
Timer0 = Preload

Config Adc = Single , Prescaler = Auto , Reference = Avcc
Start Adc
‘--
‘Init
Tclk = 256 / 8000000
Tmax = 256 * Tclk
Fg = 100
Fd = 100
‘--
‘Main program
‘F=200-4000
Do
 Fg = Getadc(1)
 H = Fg + 100
 Fg = Fg + H
 Fg = Fg + H
 F = Fg + Fd
 H = 2 * F
 H = 1 / H
 H = Tmax - H
 H = H / Tclk
 Preload = Int(h)
 H = Preload * Tclk
 H = Tmax - H
 H = 0.5 / H
 F = Int(h)
Loop
End
‘--
Oszillator:
 Timer0 = Preload
 Portb.4 = Not Portb.4
 Incr Fd
 If Fd > 1000 Then Fd = 100
Return
‘--

