
•Post Project No. 20

elektor post | Project No. 20 | 1

LED dimming
We can use the hardware PWM0 to dim an
LED. To demonstrate LED dimming via PWM
control we’ll use a 330-Ω resistor and an LED
connected between PWM0 (GPIO18/pin 12)
and ground.
At this point we would be firing up Python
and making the RPi.GPIO low-level library
do some interesting things, but surprisingly
RPi.GPIO doesn’t have a method to access
the hardware PWM0. So, instead to demon-
strate hardware PWM functionality we’ll install
wiringPi written by Gordon Henderson [1].
wiringPi is a C-based low level library for the

Hardware PWM interfaces
In pulsewidth modulation (PWM), the signal
consists of a rectangular pulse wave where the
pulse width is modified or, in technical terms,
modulated. This change produces a variation
of the average value of the waveform. PWM is
mainly used to control the power supplied to
electrical devices such as lamps and motors.
Broadcom’s BCM2835 system on chip (SoC),
which is the heart of the Pi, has two hardware
PWM channels. One is used by the system to
provide audio and the other PWM0 is spare
and can be found on the Raspberry Pi Expan-
sion Header on pin 12 (GPIO18), see Table 1.

Raspberry Pi Recipes
Part #7
PWMin’ is a piece of cake

At this stage of the (pastry) game, in this series we have looked at a lot of
digital signals, GPIO, Serial UART, SPI and I2C, as well as some analog sig-
nals (via SPI), so where next? This time we’ll be adding PWM functionality to
our Raspberry Pi.

By Tony Dixon (UK)

•Post Project No. 20

elektor post | Project No. 20 | 2

Raspberry Pi and it is usable by many differ-
ent programming languages including Python.
wiringPi is very similar to wiring, which forms
the software platform for Arduino.
To start we’ll have to install some more
software. First we’ll install Python Package
Installer (PiP) with:

sudo apt-get install python-dev
python-pip

Once this is installed we’ll download and install
wiringPi for Python by typing:

sudo pip install wiringpi2

Let’s start IDLE, the Python IDE and type the
code in Listing 1.
This Python program sets up GPIO18/PWM0
as a digital output. It then enters a loop where
the modulation to the PWM0 is increased. As
the PWM signal increases, so does the bright-
ness of the LED.

Software PWM interfaces
Okay—we got a single hardware PWM on the
Expansion Header, but what if we want to use
PWM for more than one signal? We could use a
chip such as the Texas Instruments PCA9685
16-channel 12-bit PWM to provide additional
PWM channels, or we can use software PWM
which cost us nothing.
A small warning: normally, software PWM is not
a problem when used on an embedded plat-
form such as an Arduino, where the processor
only runs its application code. However, using a
software PWM on a general-purpose computer
such as the Raspberry Pi has the additional
complication of a fully blown operating system
(OS) juggling many different tasks and pro-
grams at the same time. Because of this you
cannot guarantee that “software only” PWM
timing will not suffer from low resolution and
high jitter, as the OS pre-empts the software
PWM program to allow other things to run.
This could be a problem if we need precision
and low jitter. Fortunately, the Pi has several
Direct Memory Access (DMA) hardware chan-
nels which can be used to provide a hardware
timing aid to our software PWM. As the DMA
operates separately from the CPU, our timing
is now based on hardware so the PWM timings
are less prone to interruption by the OS and
PWM precision and jitter are now acceptable.

Table 1. Expansion Header Pin Out

Pin Name Pin Function Alternative RPi.GPIO
P1-02 5.0V - -
P1-04 5.0V - -
P1-06 GND - -
P1-08 GPIO14 UART0_TXD RPi.GPIO8
P1-10 GPIO15 UART0_RXD RPi.GPIO10
P1-12 GPIO18 PWM0 RPi.GPIO12
P1-14 GND - -

P1-16 GPIO23 RPi.GPIO16

P1-18 GPIO24 RPi.GPIO18
P1-20 GND - -

P1-22 GPIO25 RPi.GPIO22

P1-24 GPIO8 SPI0_CE0_N RPi.GPIO24
P1-26 GPIO7 SPI0_CE1_N RPi.GPIO26

Pin

Name

Board Revision 1 Board Revision 2
Pin Function Alternative Pin Function Alternative

P1-01 3.3V - 3.3V -
P1-03 GPIO0 I2C0_SDA GPIO2 I2C1_SDA
P1-05 GPIO1 I2C0_SCL GPIO3 I2C1_SCL
P1-07 GPIO4 GPCLK0 GPIO4 GPCLK0
P1-09 GND - GND -
P1-11 GPIO17 RTS0 GPIO17 RTS0
P1-13 GPIO21 GPIO27

P1-15 GPIO22 GPIO22
P1-17 3.3V - 3.3V -
P1-19 GPIO10 SPI0_MOSI GPIO10 SPI0_MOSI
P1-21 GPIO9 SPI0_MISO GPIO9 SPI0_MISO
P1-23 GPIO11 SPI0_SCLK GPIO11 SPI0_SCLK
P1-25 GND - GND -
Note: I2C0_SDA and I2C0_SCL (GPIO0 & GPIO1) and I2C1_SDA and I2C1_SCL (GPIO2 & GPIO3) have
1.8-kΩ pull-up resistors to 3.3 V.

Listing 1. Dimming an LED

#!/usr/bin/python

import wiringpi2 as gpio
import time

#set up gpio
gpio.wiringpiPiSetupGpio ()
gpio.pinMode (18,2)

while True:
 gpio.pwmWrite (18,0)
 for n in range (0,1024):
 gpio.pwmWrite (18,n)
 time.sleep (0.01)

•Post Project No. 20

elektor post | Project No. 20 | 3

the Pi’s 5 V supply, but it is recommended to
use an external supply via K4.
For control we require six GPIO signals per

DC motor control
Another common use for PWM is to control the
rotational speed of an electric motor.
The H bridge circuit depicted in Figure 1
allows a motor to be controlled in both direc-
tions, but if we apply a PWM signal to one of
the switching quadrants we can also control
the speed as well in the direction of rotation.

PiiBOT: rolling out the dough
The PiiBOT is a 4-wheel driven robot operated
remotely using a Nintendo Wii controller, as
can be seen in Figure 2. This roller features
two L293D DC motor controller chips used
to drive four small brushed DC motors and a
Bluetooth USB dongle to accept instructions
from the Wii controller.

Circuit description
Figure 3 shows the circuit schematic for
our motor controller Pi shield [2]. It has two
L293D chips. The L293D is a veteran of many
small motor projects. It has two full H bridge
circuits, each capable of sourcing 600 mA DC
(1.2 A peak) and it’s very easy to interface to.
Each H bridge has an enable (EN1/2) signal
and two directional input (IN1/3 and IN2/4)
control signals, as shown in Figure 4.
External power (4.5 V to 36 VDC) can be sup-
plied via connector K4. Alternatively, power
can be selected internally via jumper J1 from

M

T2 T4

T1 T3
R1

R2

R3

R4

EN3

EN4

EN1

EN2

130381-11

L293D

OUT1

OUT2

OUT3

OUT4

U2

EN1

VSS

EN4

IN1

IN2

IN3

IN4

VS

12 13

16

11
10

14
15

1
3

8

5

9

4

2

6
7

C9

100n

C10

100n

C11

100n

C12

100n

C13

100n

C14

100n

C15

47u
16V

C16

47u
16V

VC 5V

K5

K6

K1

10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26

1 2
3 4
5 6
7 8
9

L293D

OUT1

OUT2

OUT3

OUT4

U1

EN1

VSS

EN4

IN1

IN2

IN3

IN4

VS

1213

16

11 10

14 15

13

8

5

9

4

2

6
7

C1

100n

C2

100n

C3

100n

C4

100n

C5

100n

C6

100n

C7

47u
16V

C8

47u
16V

VC5V

K2

K3

K4

VC
3V3

VC

5V5VGPIO4

J1

130381 - 13

Figure 1.
H bridge schematic.

Figure 3. Schematic of
the PiiBOT’s add-on motor
controller shield.

Figure 2.
PiiBOT, a simple 4-wheel
roller.

•Post Project No. 20

elektor post | Project No. 20 | 4

L293D chip, making 12 GPIO signals in total
from our Pi to control our 4-wheel robot.
Table 2 provides an overview of all these
signals.
To control motor speed we’ll PWM the enable
signal of each H bridge. As the circuit has four
enable signals we’ll be using four software
PWM channels to achieve this.

Table 2. GPIO Usage

Motors 1 and 2 (U1 L293D) Motors 3 and 4 (U2 L293D)

Motor Function GPIO Motor Function GPIO

EN1 GPIO17 EN1 GPIO7

IN1 GPIO18 IN1 GPIO8

IN2 GPIO27 IN2 GPIO9

EN2 GPIO24 EN2 GPIO10

IN3 GPIO22 IN3 GPIO25

IN4 GPIO23 IN4 GPIO11

Installing Bluetooth drivers
and Python’s CWii library
To use the Nintendo Wii controller we first need to install
Bluetooth drivers for our USB Bluetooth module. We only need
basic Bluetooth communication, so we’ll use “--no-install-
recommends” option when we type our command, as shown
below:

sudo apt-get install --no-install-recommends bluetooth

With the Bluetooth dongle plugged into our Pi, we can test the
interface by typing:

sudo service bluetooth status

If everything is good we should get a response showing:

[ok] bluetooth is running.

Once the Bluetooth drivers are installed we can download
CWii [4], the Python Wii library. Simply type the following
commands:

sudo apt-get install python-cwiid

With everything installed we should be good to use the Wii
Controller with our Pi, or more specifically our PiiBOT. More
information on how to read data from such a controller may be
found in this link [5].

IN1

IN2

IN3

IN4

EN2EN1

OUT1 OUT3

OUT2 OUT4

VS VS

VS VS

10
VS

20
VSS

GND

19

11

12

133

2

1

9

8 18
14, 15, 16, 17

4, 5, 6, 7,

130381 - 14

Figure 4. L293D motor controller.

Figure 5. Python shell.

Figure 6. IDLE editor with the “piibot.py” script.

•Post Project No. 20

elektor post | Project No. 20 | 5

Once done, we can run our program by typing:

sudo ./piibot.py

When our program is running we’ll be asked to
pair the Wii controller with our Pi. To do this,
buttons 1 and 2 on the Wii controller must be
pressed at the same time. Once the control-
ler is paired, our PiiBOT will be ready to roll!

(130381)

Internet Links

[1] WiringPi GPIO Library:
http://wiringpi.com

[2] MiniPiio Motor293D add-on board:
www.dtronixs.com

[3] Raspberry Pi Support Site at Elektor.
LABS: www.elektor-labs.com/RPi

[4] CWiid library for Nintendo Wii Controller:
http://abstrakraft.org/cwiid/

[5] Nintendo Wii Remote, Python and The
Raspberry Pi: http://bit.ly/RPi-Wii

Example program: “piibot.py”
With our circuit built we are almost ready to
write our Python control program. But before
starting we need to install the drivers and
libraries required for our Nintendo Wii Con-
troller. The instructions are included in the
text box, right on this same article.
Let’s double click IDLE icon on your Pi’s
desktop to start the Python Shell and IDE
(Figure 5).
Select “File” option from the menu and cre-
ate a new program. This will start the IDLE
editor (Figure 6), where we’ll have to type
the program shown in Listing 2. Due to its
length, it may also be downloaded from the
Raspberry Pi series’ support page at Elektor.
LABS [3].
Once we’re all set, we should make sure that
it’s saved before switching to LX Terminal,
typing the following command to make our
program an executable:

chmod +x piibot.py

Listing 2. “piibot.py” (Download the program at [3])

#!/usr/bin/python
import RPi.GPIO as GPIO
import cwiid
import time

M1_EN1 = 24
M1_IN1 = 23
M1_IN2 = 22
M2_EN1 = 17
M2_IN1 = 18
M2_IN2 = 27
M3_EN1 = 7
M3_IN1 = 8
M3_IN2 = 9
M4_EN1 = 10
M4_IN1 = 25
M4_IN2 = 11

speed = 40

def Motor_Setup ():
 print ‘Setting up..’
 GPIO.setwarnings (False)

 # Configure GPIO
 GPIO.setmode (GPIO.BCM)
 GPIO.setup (M1_EN1, GPIO.OUT)
 GPIO.setup (M1_IN1, GPIO.OUT)
 GPIO.setup (M1_IN2, GPIO.OUT)
 GPIO.setup (M2_EN1, GPIO.OUT)
 GPIO.setup (M2_IN1, GPIO.OUT)
 GPIO.setup (M2_IN2, GPIO.OUT)
 GPIO.setup (M3_EN1, GPIO.OUT)
 GPIO.setup (M3_IN1, GPIO.OUT)
 GPIO.setup (M3_IN2, GPIO.OUT)
 GPIO.setup (M4_EN1, GPIO.OUT)
 GPIO.setup (M4_IN1, GPIO.OUT)
 GPIO.setup (M4_IN2, GPIO.OUT)

 print “ready”

def Motor_Forward (speed):
 print ‘Forward, speed = ‘, speed
 GPIO.output (M1_IN1, True)
 GPIO.output (M1_IN2, False)
 pwm1.ChangeDutyCycle(speed) # M1 EN1

•Post Project No. 20

elektor post | Project No. 20 | 6

 GPIO.output (M2_IN1, True)
 GPIO.output (M2_IN2, False)
 pwm2.ChangeDutyCycle(speed) # M2 EN1
 GPIO.output (M3_IN1, True)
 GPIO.output (M3_IN2, False)
 pwm3.ChangeDutyCycle(speed) # M3 EN1
 GPIO.output (M4_IN1, True)
 GPIO.output (M4_IN2, False)
 pwm4.ChangeDutyCycle(speed) # M4 EN1

def Motor_Right (speed):
 print ‘Right, speed = ‘, speed
 GPIO.output (M1_IN1, True)
 GPIO.output (M1_IN2, False)
 pwm1.ChangeDutyCycle(speed)
 GPIO.output (M2_IN1, False)
 GPIO.output (M2_IN2, False)
 pwm2.ChangeDutyCycle(0)
 GPIO.output (M3_IN1, True)
 GPIO.output (M3_IN2, False)
 pwm3.ChangeDutyCycle(speed)
 GPIO.output (M4_IN1, False)
 GPIO.output (M4_IN2, False)
 pwm4.ChangeDutyCycle(0)

def Motor_Left (speed):
 print ‘Left, speed = ‘, speed
 GPIO.output (M1_IN1, False)
 GPIO.output (M1_IN2, False)
 pwm1.ChangeDutyCycle(0)
 GPIO.output (M2_IN1, True)
 GPIO.output (M2_IN2, False)
 pwm2.ChangeDutyCycle(speed)
 GPIO.output (M3_IN1, False)
 GPIO.output (M3_IN2, False)
 pwm3.ChangeDutyCycle(0)
 GPIO.output (M4_IN1, True)
 GPIO.output (M4_IN2, False)
 pwm4.ChangeDutyCycle(speed)

def Motor_Reverse (speed):
 print ‘Reverse, speed = ‘, speed
 GPIO.output (M1_IN1, False)
 GPIO.output (M1_IN2, True)
 pwm1.ChangeDutyCycle(speed)
 GPIO.output (M2_IN1, False)
 GPIO.output (M2_IN2, True)
 pwm2.ChangeDutyCycle(speed)
 GPIO.output (M3_IN1, False)

 GPIO.output (M3_IN2, True)
 pwm3.ChangeDutyCycle(speed)
 GPIO.output (M4_IN1, False)
 GPIO.output (M4_IN2, True)
 pwm4.ChangeDutyCycle(speed)

def Motor_Stop ():
 GPIO.output (M1_IN1, False)
 GPIO.output (M1_IN2, False)
 pwm1.ChangeDutyCycle(0)
 GPIO.output (M2_IN1, False)
 GPIO.output (M2_IN2, False)
 pwm2.ChangeDutyCycle(0)
 GPIO.output (M3_IN1, False)
 GPIO.output (M3_IN2, False)
 pwm3.ChangeDutyCycle(0)
 GPIO.output (M4_IN1, False)
 GPIO.output (M4_IN2, False)
 pwm4.ChangeDutyCycle(0)

Main Program
Motor_Setup ()
pwm1 = GPIO.PWM (M1_EN1, 100)
pwm2 = GPIO.PWM (M2_EN1, 100)
pwm3 = GPIO.PWM (M3_EN1, 100)
pwm4 = GPIO.PWM (M4_EN1, 100)
pwm1.start (0)
pwm2.start (0)
pwm3.start (0)
pwm4.start (0)

Motor_Stop ()

button_delay = 0.1

print ‘Press 1 + 2 on your Wii Remote’
time.sleep(1)

Connect to the Wii Remote
try:
 wii=cwiid.Wiimote()
except RuntimeError:
 print ‘Error Connecting to Wii Remote’
 quit()

print ‘Wii Remote connected’

wii.rpt_mode = cwiid.RPT_BTN

•Post Project No. 20

elektor post | Project No. 20 | 7

Loop
try:
 while True:

 buttons = wii.state[‘buttons’]

 stop = True

 if (buttons & cwiid.BTN_LEFT):
 Motor_Left (speed)
 time.sleep(button_delay)
 stop = False

 if(buttons & cwiid.BTN_RIGHT):
 Motor_Right(speed)
 time.sleep(button_delay)
 stop = False

 if (buttons & cwiid.BTN_UP):
 Motor_Forward (speed)
 time.sleep(button_delay)
 stop = False

 if (buttons & cwiid.BTN_DOWN):
 Motor_Reverse (speed)
 time.sleep(button_delay)
 stop = False

 if (buttons & cwiid.BTN_MINUS):
 speed = speed - 1
 if (speed < 0):
 speed = 0
 print ‘speed =’, speed
 time.sleep(button_delay)

 if (buttons & cwiid.BTN_PLUS):
 speed = speed + 1
 if (speed > 100):
 speed = 100
 print ‘speed =’, speed
 time.sleep(button_delay)

 if (stop == True):
 Motor_Stop ()

except KeyboardInterrupt:
 pass

print “End”
GPIO.output (M1_EN1, False)
GPIO.output (M1_IN1, False)
GPIO.output (M1_IN2, False)
GPIO.output (M2_EN1, False)
GPIO.output (M2_IN1, False)
GPIO.output (M2_IN2, False)
GPIO.output (M3_EN1, False)
GPIO.output (M3_IN1, False)
GPIO.output (M3_IN2, False)
GPIO.output (M4_EN1, False)
GPIO.output (M4_IN1, False)
GPIO.output (M4_IN2, False)

pwm1.stop ()
pwm2.stop ()
pwm3.stop ()
pwm4.stop ()

GPIO.cleanup
exit (wii)

