
•Post Project No. 19

elektor post | Project No. 19 | 1

peripherals are available through the Revo-
lution Education online store [3].

Analog input
All previous examples used a binary (all-
or-nothing) switch to control output cir-
cuits. However, in many cases finer control
is needed. The analog-to-digital converters
(ADCs) on the PICAXE are able to read an ana-
log voltage, usually ranging from +5 V (supply
voltage) to 0 V, and convert it to an 8-bit (or,
for some PICAXE chips, 10-bit) digital value.
A potentiometer acts as an adjustable voltage
divider: it is used as an analog input device.
The wiper (middle terminal) is connected to

A friendly reminder
on how to get ready
As in previous installments, all experiments
described herein are performed using a
PICAXE 08M2 microcontroller (pinout repeated
in Figure 1), operating at 5 volts thanks to
an ATX power supply. Example circuits are
built on solderless breadboards. Program-
ming of the PICAXE chips is done through a
USB-to-serial cable following the method for
programming the PICAXE chip, described in
the previous articles [1], based on LinAXE-
pad software version 1.5.0 for (Arch) Linux.
To avoid any confusion, all pin numbers in
schematics refer to the physical pin number
on the chip (for all examples: pin 5 is a PWM
output, pin 6 is analog input 1). Pin numbers
in code listings refer to internal pin names
according to Figure 1. For examples on how
to program a PICAXE chip, please refer to the
previous articles [1], or the PICAXE manual
on the website [2]. PICAXE chips and various

Bury the Hatchet,
Unbury the Axe (3)
Of Analog Inputs, PWM, Servos and
PICAXE’s Musical Skills

In the course of this article series [1] we first showed how
to program a PICAXE chip and how to build basic input and
output circuits (Elektor.POST Project No. 8). In the second
installment (Elektor.POST Project No. 16) we covered the
control of various types of switches, and how to calculate
the appropriate component values for your designs. This time we will be
looking at how to read and process values from analog inputs, describing
multiple output types using circuits connected to a pulsewidth modulation
(PWM) output, in combination with the already available PICAXE com-
mands. We will also be able to position mechanical parts accurately using
servos controlled by a PICAXE chip, as well as creating and playing mono-
phonic ringtones!

By Wouter Spruit
(Netherlands)

Figure 1.
PICAXE 08M2 pinout.

•Post Project No. 19

elektor post | Project No. 19 | 2

a PICAXE ADC pin, and the voltage depends
on its position.
If we turn the wiper close to the 0 Ω end,
the current through the ADC pin should be
limited to avoid damage to components (as
explained in part no. 2 [1]). However, sim-
ply adding resistors to limit current will also
impact the ADC readings. A 330 Ω resistor
between the wiper and the ADC pin will limit
the current to

Ω
=V A5

330
0.0152

which is well within the 0.02 A sink limit for
pins. For this example we will use a 10 kΩ
linear pot. Thus, the maximum voltage over
the ADC becomes:

× Ω
Ω+ Ω

= × =V k
k

V V5
10

330 10
5 0.97 4.84

This relatively minor effect can be compen-
sated by software. Discussions on selecting
the resistance of components to connect to
the PICAXE ADC input can be found on the
PICAXE forums [4]. The consensus on the
forums is that a value of 10 kΩ should be
optimal for a potentiometer connected to a
PICAXE (or related Microchip PIC) ADC input.
The example shows how to switch an LED
on or off, using the pot’s wiper position as a
switch. The circuit is shown in the schematics
represented in Figures 2 and 3 (input and
output respectively). The required code can
be found in Listing 1, while Figure 4 depicts
the setup of this experiment on a breadboard.
In this example, if the ADC value is between
2.5 V to 5 V, the LED is turned on, otherwise
it’s turned off. It’s obvious that for this case it
would have been better to use a simple on/off
switch, but in the next example this same cir-
cuit will be used to regulate the brightness of
the LED. Some cases are known where PICAXE
ADC inputs behave unexpectedly, especially
when the input impedance exceeds 20 kΩ or
so. Should you want to know more, you may
find info on the forums [4], and of course on
the Internet.

PWM basics
Though the PICAXE does not integrate ana-
log outputs, it does come with one (or more)
PWM outputs. A PWM output can be used for a
number of useful things, including something

330R
10k
lin.

+5V

Pin 6

BC547B
E

C

B

LED

33
0R

+5V

2k2
Pin 5

Figure 2.
Analog input schematic.

Figure 3.
PWM output schematic.

Figure 4.
PWM output breadboard
setup.

Listing 1: Analog In

init:
low 2
main:
do
 readadc 1,b1
 if b1 > 127 then
 high 2
 else
 low 2
 endif
loop

•Post Project No. 19

elektor post | Project No. 19 | 3

variables to produce a PWM signal, approx-
imating your specifications (limited by the
pwmout command resolution).

PWM is useful for dimming LEDs or controlling
DC motor speed. A LED does not obey Ohms
law (see previous article). To control its bright-
ness without using a current source (a power
supply that varies its output voltage to deliver
a constant output current), PWM can be used
to rapidly switch the LED on and off. With a
duty cycle of 50%, the LED is only switched
on for 50% of the time. The perceived LED
brightness changes accordingly. Because the
frequency of the PWM signal is very high,
only the average result of the switching can
be seen by human eyes.

The PWM frequency to use for dimming an
LED should be high enough to be visually
imperceptible. Consider the output resolution
though—selecting a frequency closer to the
PICAXE maximum frequency will reduce the
number of bits available to set the duty cycle.

This example will use a LED to show the princi-
ple behind controlling output intensity through
PWM, but the same goes for controlling the
speed of a DC motor. The PICAXE cannot
source enough current for a motor, so a tran-
sistor should be used to operate the motor,
as mentioned in the previous PICAXE article
(Elektor.POST Project No. 16) [1]. There we
also mentioned the transistor switching speed:
this becomes something to keep in mind when
using PWM. If the transistor cannot switch fast
enough to keep up with the PWM frequency,
the PWM output signal will become distorted
and therefore unusable. Lowering the PWM
frequency or selecting a faster transistor will
solve this problem. Note that Darlington pairs
are even slower than single transistors, as
explained also in the previous installment.

The circuit will be identical to the previous
example in Figures 2 and 3 (for input and

very close to actual analog output. The PWM
output pin will continuously output a square
wave signal, and in contrast to normal PICAXE
commands, the PWM output command runs in
the background (in parallel to the rest of pro-
gram execution). A PWM signal can be defined
by frequency and duty cycle, as shown in Fig-
ure 5. Frequency is the number of repeating
cycles per unit time (usually seconds); the
period is the duration of one cycle and the
duty cycle is the percent spent in an active
state (High). Though some software like the
RPi.GPIO Python library for software PWM on
a Raspberry PI [5] would allow the user to set
the PWM frequency and duty cycle directly, on
PICAXE, setting up PWM is more challenging.
Multiple commands exist, but the newest and
most relevant one is “pwmout”. Because this
command is not that simple, we will base on
the pwmout description available in [2], instead
of trying to explain everything from scratch.
The frequency of the PWM signal is based
on the frequency of the PICAXE clock. Most
PICAXE chips support multiple clock speeds,
but the pwmout command only works with a
limited number of frequencies. Commonly, the
default clock frequency is 4 MHz, which will
work with pwmout. The most simple uses for
the pwmout command are ‘pwmout pin,pe-
riod,duty cycles’ to turn the signal on and
‘pwmout pin,OFF’ to turn it off again. The
variables period and duty cycles are used
to set the PWM frequency (fPWM), period (TPWM)
and duty cycle (DPWM) respectively, through
the following relations:

()= = + × ×
f

T period resonator speed1
1 4

PWM
PWM

= ×D duty cycles resonator speedPWM

Where resonator speed is 1/4000000 for a
4 MHz clock.

Note the pwmout command is using a time
period instead of a percentage to specify the
duty cycle! Luckily, the PWMout wizard will
ease things out. A number of wizards are pres-
ent in the (LinAxePad) software, the one for
PWM may be found under PICAXE ª Wizards
ª PWMout. The wizard allows us to specify the
PWM frequency in Hz, and the duty cycle as
a percentage (the way we are used to), and
it outputs a pwmout command complete with

Period

Duty Cycle

Figure 5.
Structure of a PWM signal.

•Post Project No. 19

elektor post | Project No. 19 | 4

ing to the periods of 0.75 to 2.25 ms the servo
kind of expects.
An example circuit on how to connect a servo
is provided in the schematic of Figure 6,
and once again, the analog input circuit

output respectively), but this time the soft-
ware is a bit more complicated, as shown in
Listing 2. The calculations performed fit the
range of input values (0-255) to the range
of output values (0-100). The next part will
make use of this principle.
The new program uses the 8-bit ADC input
signal from the pot’s wiper position to set the
duty cycle of a PWM output signal, toggling
the LED. You are now able to control the LED
brightness with the potentiometer!

Let’s move those servos
A servomotor is a mechanical actuator meant
for precise control of position, among oth-
ers. A typical servo is connected via three
wires, black for ground, red for supply volt-
age, and white (usually) for data. A servo will
try to assume a position specified by a sig-
nal through the data pin. If the signal is lost,
it will no longer hold its position. To set the
position of a servo, it expects a square wave
carrier signal with a period of 20 ms (fre-
quency = 1 / 0.020 = 50 Hz); the duty cycle
(periods of 0.75 ms to 2.25 ms) determines
the angle. We don’t have to use the pwmout
command for this, as PICAXE comes with two
other commands. The first command, ‘servo
pin,pulse’ initializes a PWM-capable out-
put as a servo output. Next, the ‘servopos
pin,pulse’ command is used to change the
servo position.
When connecting the servo, the data line is
connected to the PICAXE servo (PWM capable)
output pin via a current limiting resistor (for
example 330 Ω), but the servo needs a sep-
arate power supply for a number of reasons.
A servo can draw large currents and cause
a lot of noise on the power line. In practice,
this means the PICAXE will behave erratically
if the power supplies are not separated! Also,
some servos may require a higher voltage
than the rest of your electronics. The 0 V
of the PICAXE power supply and the servo
power supply should be interconnected to
provide a common reference rail. A capac-
itor is connected between servo V+ and V0
to reduce ripple. For the servo power supply
in the example, four 1.5-V ‘AA’ dry cells have
been used (not rechargeables, they have a
lower nominal voltages of about 1.2 V) for
a total of 6 V.
The values for the variable pulse are expected
to be within the 75 to 225 range, correspond-

33
0R

1
2
3

Pin 5

+6V

100n

SERVO PWR

SERVO GNDPICAXE GND

Servo
connector

probably white
red
black

Figure 6.
Servomotor schematic.

Listing 3: Servo control

init:
servo 2,100 ;init servo
main:
do
 readadc 1,b1 ;get analog input
 if b1 > 250 then ;clamp value
 b1 = 250
 endif
 w1=b1*3 ;scale value
 w1=w1/5
 b2=b2+75
 servopos 2,b2 ;update servo position
loop

Listing 2: PWM Out

init:
low 2
main:
do
 readadc 1,b1 ;get analog value
 if b1 > 250 then ;clamp value
 b1 = 250
 endif
 w1=b1*10 ;w1 is a 16-bit register (b2 with b3)
 w1=w1/25 ;needed for integer arithmetic
 pwmout 2,24,b2 ;b2 is the significant part of w1
loop

•Post Project No. 19

elektor post | Project No. 19 | 5

tune) is integrated in the command too. Obvi-
ously, to use tune we will need a PWM-ca-
pable output, and in the case of the PICAXE
08M2 chip there is only one. The command
‘play’ is also available, which plays one of
the pre-programmed tunes.

The PICAXE manual part 2 [6] includes exten-
sive documentation regarding the tune com-
mand, as well as sample circuits to use it with
a piezoelectric buzzer, a speaker, or an exter-
nal audio amplifier. For the tune example, the
author used a pair of recycled old headphones.
The circuit in the manual to connect a speaker
recommends to use a 40-80 Ω speaker. If you
measure a lower speaker resistance, then a
series resistor must be added in order to get
at least 40 Ω in total.

Another wizard is available (under PICAXE
ª Wizards ª Ring Tone Tunes) to aid in the
creation of melodies with the tune command
(and import ring tones in the RTTTL format,
for instance from this site [7]). Even though
this command allows us to create tunes easy
and fast, we can also use the pwmout com-
mand to make tunes manually, or, to create
sound effects similar to the ones used in old
Atari games. Hint: change the PWM wave
parameters rapidly in for-loops with varying
STEP parameters. You can also nest differ-
ent for-loops.

The circuit to connect a speaker (from the
PICAXE manual part 2 in [6]) is presented
in Figure 8, and the code for a single tune

remains the same of the previous examples
(Figure 2). The code to control the servo
through the pot connected in the analog input
is found in Listing 3. The example setup
could look like the one shown in Figure 7.
Because the PICAXE registers are 8-bit or
16-bit integers, we have to work around that
limitation to make the ADC input (0-255)
correspond to the output range (0-100). In
this case the range of the output values is
75-225, which means the range to scale to
the analog input is 225 – 75 = 150. Because
150 / 250 = 3 / 5, we can get the scaled
value by multiplying the ADC value by 3 (this
requires 16-bit resolution because 3 × 255
does not fit within the maximum 8-bit value
of 255), followed by a division by 5. Addition
of the minimum value of 75 gives a scaled
output value b1 within the correct range to
position the servo, according to the value
in the wiper terminal of the potentiometer.
Note that b2 is used in the code to repre-
sent the lowest 8 bits of w1 because w1 is a
16-bit register made up from the two 8-bit
registers b2 and b3, as described on the
previous part [1].

A precise control of the angle is very useful
in robotics, but such projects would proba-
bly require many more servos than the PWM
outputs available on a single PICAXE chip.
A solution to this problem would be includ-
ing dedicated servo driver chips. The PICAXE
could talk to these peripherals, and the servo
driver board would remember and set posi-
tions for more than 20 servos per board. For
instance, the AXE031 allows to control up to
21 channels [3]. In the next article we will
focus on how to make the PICAXE “talk” to
peripherals.

The Singing PICAXE: generating
melodies and sounds
Another built-in PWM-based PICAXE function-
ality is the ‘tune’ command. The command
syntax is different for some versions of the
chip, because of the number of (PWM) out-
puts. We will use the version suitable for 8-pin
PICAXE chips. The tune command is used
to play a monophonic tune (or monotone)
made of speaker bleeps, similar to old-fash-
ioned mobile phone ringtones. For some rea-
son, a functionality to switch other outputs
(intended to make LEDs flash to match the

Figure 7.
Servomotor breadboard
setup.

•Post Project No. 19

elektor post | Project No. 19 | 6

calculating the RC value it is advisable to use
at least a factor of 100 to get an output signal
with relatively minor ripple.
We will not use the highest PWM frequency
available, because the PICAXE loses its
finer control over the duty cycle at higher
PWM frequencies. Instead, to control the
duty cycle in 100 steps, a frequency of
4 MHz / 100 = 40 KHz. The parameter duty
cycles passed to the pwmout command is
now conveniently the same as the duty cycle
percentage! With a PWM frequency of 40 KHz
and a value of 10 KΩ for R (to limit current
as explained),

may be found in Listing 4. It is important
to introduce this code exactly, there should
only be one line of code for it to work. The
experimental setup is shown in Figure 9. The
listing uses a simple demo melody (do you
recognize it?), but feel free to experiment with
the tune (or pwmout) command to create new
tunes and sounds. Note this example does not
require the input circuit, but don’t remove it
yet, we will need it again for the next part.

This PWM output
wants to be analog
PICAXE only integrates digital output pins.
However, it is still possible to output an ana-
log voltage using PWM with a low-pass filter.
In the previous parts [1], we also covered
the principle of the voltage divider. When a
potential is applied to a number of resistors
in series, then the voltage over the individ-
ual resistors is divided proportionally to their
respective resistances. A PWM (square) wave
through a low-pass filter effectively works the
same way. The second resistor in the voltage
divider is replaced by a capacitor, so the volt-
age over the capacitor will be proportional to
the duty cycle of the PWM signal. However,
this only works if the frequency of the PWM is
significantly larger than the cutoff frequency
of the low-pass filter. The formula to calculate
the cutoff frequency is:

π
=f

RC
1

2C

A bigger RC value results in a smoother DC
output voltage, but it is also slower: If the
PWM frequency changes, the analog output
voltage takes more time to change accord-
ingly. To select components, first we may cal-
culate the resistor value to limit the current,
then choose a value for C using the high-pass
filter formula

π
=C factor

R f2

where “factor” acts as a multiplier to move
the cutoff frequency of the filter away from
the PWM frequency. To visualize the effects
of the PWM frequency and RC value, a web-
site [8] provides a simulation that shows how
the shape of the analog output changes with
different wave and circuit parameters. When

Listing 4: Generating a Tune (one line)

tune 1,4,($67,$69,$40,$69,$04,$4C,$04,$22,$4C,$67,$69,$40
,$69,$02,$4C,$02,$00,$4C,$6B,$29,$67,$69,$40,$69,$C0,$02,
$2B,$29,$27,$27,$C2,$E0,$67,$69,$40,$69,$04,$4C,$04,$22,$
4C,$67,$69,$40,$69,$C7,$2B,$20,$6B,$29,$67,$69,$40,$69,$C
0,$02,$2B,$29)

Pin 5

10u

10u

Figure 8.
Tune generating schematic.

Figure 9.
Speaker breadboard
setup (using recycled
headphones).

•Post Project No. 19

elektor post | Project No. 19 | 7

Internet Links

[1] “Bury the Hatchet, Unbury the Axe”, (1)
and (2), Elektor.POST Projects Nos. 8 and
16.
www.elektor-magazine.com/extra/post

[2] www.picaxe.com/Getting-Started/
PICAXE-Manuals

[3] www.techsupplies.co.uk/PICAXE

[4] www.picaxeforum.co.uk/forum.php

[5] https://code.google.com/p/
raspberry-gpio-python/wiki/PWM

[6] www.picaxe.com/docs/picaxe_manual2.
pdf

[7] www.picaxe.com/
RTTTL-Ringtones-for-Tune-Command/

[8] http://sim.okawa-denshi.jp/en/PWMtool.
php

π
=

× ×
=

× =−

C

nF

100

2 10000 40000

3.98 10 39.88

The closest standardized capacitor value
would be 47 nF. In this case, the PWM signal
will not be changed, so a (much) larger C
value could be used to get a smoother output
without side effects.

This output circuit is shown in Figure 10,
while the input circuit stays the same (Fig-
ure 2). We will use the same code as in List-
ing 2 because the PWM frequency is already
40 KHz, and the correct scaling code is also
included. The breadboard setup can be seen
in in Figure 11.

The analog input is used to control the ana-
log output voltage via the PWM duty cycle.
The smoothness of the output signal can be
visualized using an oscilloscope, or, if the out-
put is smooth enough, a standard voltmeter.
It would be possible to connect the output
directly to the analog input of the PICAXE, to
measure the output voltage using the PICAXE
ADC, but at this point we have no way to dis-
play the results yet.

Summary
In addition to programming a PICAXE chip
and controlling simple electronics, we can
now use analog inputs, and we have gained
a more refined control over our outputs. We
can now use a PWM output to generate an
analog output signal, design a dimmed out-
put, and even generate old-fashioned sounds
and control the position of a servo accurately.
However, in the last example we encountered
a problem: We cannot display any data yet,
for instance as part of an interface to more
complex PICAXE programs, or to show data
collected from the (analog) input. But don’t
panic! In the next installment brought to you
by Elektor.POST we will show how to use the
PICAXE function to communicate with differ-
ent peripherals, greatly increasing the possi-
bilities of a PICAXE-based project, including
an OLED character display.

(130262)

10
k

47n

Pin 5

V analogue out

Figure 10.
Analog output schematic.

Figure 11.
Analog output breadboard
setup.

