
Elektor•Post Project No. 11

elektor post | Project No. 11 | 1

new smaller expansion header—a small but
important thing to remember when we come
to do things with the I²C on our Raspberry Pi.

I²C Interface
The Inter-IC or I²C is the final of the three
serial interfaces you’ll find on the Raspberry
Pi’s Expansion Header. The other two inter-
faces are an UART Serial Interface and the SPI
interface (see parts #3 and #4 respectively).

Table 1 details the Expansion Header signals
and the I²C interface can be found on pin 3
(SDA) and pin 5 (SCL).

Like SPI, the I²C interface is designed to inter-
face other devices with a minimal number of
signals. I²C uses only two bidirectional open-
drain lines, Serial Data Line (SDA) and Serial
Clock (SCL) to provide its bus. These are typi-
cally pulled up with resistors to 3.3 V as in the
Raspberry Pi’s case via two 1.8 kΩ resistors

I²C is not as fast as say the SPI bus, but
common bus speeds for it are 100 Kbit/s in
Standard Mode and 400 Kbit/s in Fast Mode.
The Broadcom SoC chip used by the Raspberry
Pi has two I²C interfaces. The original version
of the Raspberry Pi only had one I²C interface
available, the first of the I²C interfaces (I2C_
SDA0 and I2C_SCL0) on its Expansion Header.

The second Raspberry Pi revision added an
additional smaller expansion header and
allowed access to the second I²C interface,
but it also swaps things around a little. The
Expansion Header of a Revision 2 is changed
to use the second I²C interface (I2C_SDA1
and I2C_SCL1), while the first I²C interface
(I2C_SDA0 and I2C_SCL0) was moved to the

Raspberry Pi Recipes
Part #5
I²C: I Square Seeds (for baking)

In the previous two parts published through Elektor .POST we’ve looked
at the UART and SPI interfaces of the Raspberry Pi’s Expansion Header.
Now, on our way to becoming electro-baking experts, we’ll take a look
at the last of the Raspberry Pi’s serial interfaces, the I²C Bus.

By Tony Dixon (UK)

Table 1. Expansion Header Pin Out

Pin Name Pin Function Alternative RPi.GPIO
P1-02 5.0V - -
P1-04 5.0V - -
P1-06 GND - -
P1-08 GPIO14 UART0_TXD RPi.GPIO8
P1-10 GPIO15 UART0_RXD RPi.GPIO10
P1-12 GPIO18 PWM0 RPi.GPIO12
P1-14 GND - -

P1-16 GPIO23 RPi.GPIO16

P1-18 GPIO24 RPi.GPIO18
P1-20 GND - -

P1-22 GPIO25 RPi.GPIO22

P1-24 GPIO8 SPI0_CE0_N RPi.GPIO24
P1-26 GPIO7 SPI0_CE1_N RPi.GPIO26

Pin

Name

Board Revision 1 Board Revision 2
Pin Function Alternative Pin Function Alternative

P1-01 3.3V - 3.3V -
P1-03 GPIO0 I2C0_SDA GPIO2 I2C1_SDA
P1-05 GPIO1 I2C0_SCL GPIO3 I2C1_SCL
P1-07 GPIO4 GPCLK0 GPIO4 GPCLK0
P1-09 GND - GND -
P1-11 GPIO17 RTS0 GPIO17 RTS0

P1-13 GPIO21 GPIO27

P1-15 GPIO22 GPIO22
P1-17 3.3V - 3.3V -
P1-19 GPIO10 SPI0_MOSI GPIO10 SPI0_MOSI
P1-21 GPIO9 SPI0_MISO GPIO9 SPI0_MISO
P1-23 GPIO11 SPI0_SCLK GPIO11 SPI0_SCLK
P1-25 GND - GND -

Elektor•Post Project No. 11

elektor post | Project No. 11 | 2

intend to use the hardware I²C interface. The
hardware I²C is disabled by default, so we
have to change this by editing the blacklist file:

sudo nano /etc/modprobe.d/raspi-
blacklist.conf

Find the text line with blacklist i2c-
bcm2708, insert a # (hash) at the start of
the line to comment-out the statement and
then save the file.

Next we need to edit the modules file by:

sudo nano /etc/modules

Add the text i2c-dev to a new line and save
the file.

We’ll now install the i2c-tools package by
typing:

sudo apt-get update
sudo apt-get install i2c-tools

Once this is installed, we need to add a new
user to the i2c group, type:

Port Expander Hardware (again)
In our Raspberry Pi I²C project we’ll be
expanding the number of the RPI GPIOs by
adding yet another Port Expander. As before,
we’ll be using a port expander from Microchip,
but this time it’s about a 16-channel MCP23017
[1], which is the I²C cousin of the MCP23S17
we used in our SPI Port Expander Project.
Figure 1 shows a simplified MCP23017 cir-
cuit. The chip is connected to the RPi’s I²C
interface. Unlike the SPI version of the circuit
there are no chip enable signals required, so
the circuit is very simple. Jumpers J1, J2 and
J3 provide optional address signals to the
port expander, allowing more than one port
expander to be connected to the I²C bus.
Figure 2 shows our hardware setup where
we are using a small add-on board to provide
our MC23017 interface. Eagle eyed readers
will notice it’s the same board as we used
previously [2], which is correct, as this par-
ticular board design can use either the I²C
MCP23017 or SPI MCP23S17 by changing the
jumper selection for either SPI or I²C.

Installing I²C Tools
Before we install the I²C tools we need to do
a little housekeeping and tell Raspian that we

Figure 1.
Schematic for Raspberry Pi
MCP23017 Port Expander.

Elektor•Post Project No. 11

elektor post | Project No. 11 | 3

and type the following commands:

sudo apt-get install python-smbus

Once this is installed, we’re now ready to use
the I²C with Python.

Example Program – mcp23017.py
With smbus installed we’re now going to write
a small test program to illuminate LEDs wired
to the Port Expander GPIO.

Double click IDLE icon on your Pi’s desktop to
start the Python Shell and IDLE (Figure 5).

Select File option from the menu and create a

sudo adduser pi i2c

Let’s do a quick reboot by typing:

sudo reboot

Once we’ve rebooted, we can check for the
I2C interfaces. Start a new LXTerminal ses-
sion and type...

ls /dev/i2c*

...to check that we have two I²C devices listed
(one for each I²C interface) and we should
have:

/dev/i2c-0
/dev/i2c-1

We can also test them, if you have a Rev 1
Pi type:

sudo i2cdetect -y 0

or if you have a Rev. 2 Pi type:

sudo i2cdetect -y 1

You should see something like this, see
Figure 3.

Installing Python’s smbus I²C
Library
We’ll be using Python 2 for the examples in
this project. Python, as we should know from
our previous parts, is already is installed as
standard in the Raspian distribution.

However, there is no provision for the I²C
interface. To fix this we will need to install the
I²C Python wrapper / library, so let’s start a
LXterminal session, as shown in Figure 4,

Figure 2.
Pi and MCP23017 Add-On
Board.

Figure 3.
“i2cdetect” results.

Figure 4.
LXTerminal.

Figure 5.
IDLE Python Shell.

Elektor•Post Project No. 11

elektor post | Project No. 11 | 4

new program. This will start the IDLE editor.

In the IDLE editor (Figure 6), type the pro-
gram as shown in Listing 1.

Once you’ve typed the program, make sure
you save it, then switch to a LXTerminal and
type the following command to make your
program an executable:

sudo chmod +x mcp23017.py

Once done, you can run your program by
typing the following command:

sudo ./mcp23017.py Figure 6.
IDLE Editor.

Listing 1.

#! /usr/bin/python

import smbus
import time

I2C address of MCP23017
address = 0x20

Create I2C instance and open bus
i2cbus = smbus.SMBus(0)

Configure MCP23017
i2cbus.write_byte_data(address,0x00,0x00) # Set Bank A to outputs
i2cbus.write_byte_data(address,0x01,0xFF) # Set Bank B to inputs

Main loop
while True:
 # Turn off LEDs
 i2cbus.write_byte_data (address,0x12,0x00)
 time.sleep(1)

 # Turn on PortA.0
 i2cbus.write_byte_data (address,0x12,0x01)
 time.sleep(1)

Note: For Rev 2 Pi boards change the line:

i2cbus = smbus.SMBus(0) to i2cbus = smbus.SMBus(1)

Elektor•Post Project No. 11

elektor post | Project No. 11 | 5

Table 2 includes a quick summary of
MCP23x17 control registers.

(130236)

Internet Links

[1] ww1.microchip.com/downloads/en/
devicedoc/21952b.pdf

[2] www.dtronixs.com

Table 2. MCP23x17 Register Address Map

Address

IOCON.BANK = 1

Address

IOCON.BANK = 0
Register Description

0x00 / 0 dec 0x00 / 0 dec IODIRA I/O Direction Register for Port A

0x10 / 16 dec 0x01 / 1 dec IODIRB I/O Direction Register for Port B

0x01 / 1 dec 0x02 / 2 dec IPOLA Input Polarity Port Register for Port A

0x11 / 17 dec 0x03 / 3 dec IPOLB Input Polarity Port Register for Port B

0x02 / 2 dec 0x04 / 4 dec GPINTENA Interrupt-n-Change Control Register Port A

0x12 / 18 dec 0x05 / 5 dec GPINTENB Interrupt-n-Change Control Register Port B

0x03 / 3 dec 0x06 / 6 dec DEFVALA Default Compare Register for GPINTENA

0x13 / 19 dec 0x07 / 7 dec DEFVALB Default Compare Register for GPINTENB

0x04 / 4 dec 0x08 / 8 dec INTCONA Interrupt Control Register for Port A

0x14 / 20 dec 0x09 / 9 dec INTCONB Interrupt Control Register for Port B

0x05 / 5 dec 0x0A / 10 dec IOCON I/O Expander Configuration Register

0x15 / 21 dec 0x0B / 11 dec IOCON I/O Expander Configuration Register

0x06 / 6 dec 0x0C / 12 dec GPPUA Pull-Up Resistor Configuration Register Port A

0x16 / 22 dec 0x0D / 13 dec GPPUB Pull-Up Resistor Configuration Register Port B

0x07 / 7 dec 0x0E / 14 dec INTFA Interrupt Flag Register for Port A

0x17 / 23 dec 0x0F / 15 dec INTFB Interrupt Flag Register for Port B

0x08 / 8 dec 0x10 / 16 dec INTCAPA Interrupt Capture Register for Port A

0x18 / 24 dec 0x11 / 17 dec INTCAPB Interrupt Capture Register for Port B

0x09 / 9 dec 0x12 / 18 dec GPIOA Port Register for Port A

0x19 / 25 dec 0x13 / 19 dec GPIOB Port Register for Port B

0x0A / 10 dec 0x14 / 20 dec OLATA Output Latch Register for Port A

0x1A / 26 dec 0x15 / 21 dec OLATB Output Latch Register for Port B

