
Elektor•Post Project No. 8

elektor post | Project No. 8 | 1

a range of accessories: from components,
breadboards, cams and gears to cables, I2C
peripherals, LCD screens and starter packs.
The website aims to offer everything neces-
sary to get started programming the PICAXE
right away. The online store even offers kits to
build toys like such as robots based on PICAXE
microcontrollers. All peripherals for sale come
with extensive documentation on how to inter-
face them with a (PICAXE) microcontroller.
So even if you’re not using a PICAXE micro-
controller in your project, checking out this
store for components might be worthwhile.

The secret that defines PICAXE is the special
firmware. A PICAXE chip is a Microchip PIC
pre-programmed with the PICAXE firmware,
including a BASIC interpreter and a number of
pre-loaded functions. The PICAXE code allows
a user to upload a PICAXE BASIC program at
any time, via the serial connection (as long
as it’s not in use by the current program-
ming). The new code starts executing right
away. Because the PICAXE programs are inter-
preted BASIC code, the number of instruc-

What? Why? How?
The PICAXE products are a range of Microchip
PIC microcontrollers programmed with a spe-
cial firmware by Revolution Education [1]. The
philosophy behind the PICAXE system is that
the best way to learn how to program and
implement microcontrollers in a project is to
use a cheap system that doesn’t require a lot
of experience but still offers complex interfac-
ing capabilities that make the microcontrol-
lers suitable for more advanced projects. The
PICAXE line offers a range of microcontrollers
of different shapes and sizes, from simple
microcontrollers with only 8 pins and limited
capabilities, to the more advanced 40-pin
40X2 model (Figure 1). Since the introduc-
tion of the PICAXE system over 15 years ago,
more recent parts have replaced the PIC
microcontrollers that form the foundation of
the PICAXE system, offering not only more
memory and computational power, but also
parallel execution of tasks in many cases [2].

The Revolution Eduction webstore [3] not only
offers the PICAXE microcontrollers, but also

Bury the hatchet,
unbury the axe

Microcontrollers can be used to add
processing capabilities to any project,
and off-the shelf microcontrollers are
often used to fulfill a specific purpose.
Programming a microcontroller with
your own firmware gives you complete
freedom to implement smart input and
output for your projects. The PICAXE
system gives any hobbyist the chance
to program a microcontroller and inter-
face it to peripherals with little hassle
and at low cost.

Getting started with PICAXE
By Wouter Spruit (NL)

Figure 1.
PICAXE chip sizes.

Elektor•Post Project No. 8

elektor post | Project No. 8 | 2

and AXEpad, in addition to being available on
the PICAXE website [6]. The manual is split in
three parts, called “getting started”, “BASIC
commands” and “microcontroller interfacing
circuits.”. The first part contains information
on the technical capabilities and pinouts of
various PICAXE products, instructions on pow-
ering and connecting to the device, as well
as a number of tutorials to get started with
the system. The second part of the manual
covers descriptions for all BASIC commands,
as well as providing information on the com-
mand availability on the various PICAXE chips
and programming examples. The third part
of the manual is a collection of interfacing
examples. The manual not only covers inter-
facing basic components such as a switch,
LED or motor via Darlington pair, but it also
provides examples for interfacing the PICAXE
chip with commercially available components
and chips, including instructions for adding an
LCD screen via I2C, and it even covers con-
necting the PICAXE to a PC via a serial con-
nection. The best part about the examples is
that they don’t apply exclusively to interfac-
ing PICAXE with components, but the general
principle applies to interfacing peripherals with
any non-PICAXE chip (still, it might be wise
to consider the chip’s operating voltage and
maximum current it could sink and source).

Though it was originally designed for edu-
cational purposes, PICAXE is also especially
suitable for use in many hobbyist projects.
PICAXE users are encouraged to upload their
projects to the PICAXE website. The gallery
of user projects has become a great show-
case for PICAXE capabilities. The forums
available on the website are a good place to
get answers to your questions regarding the
PICAXE system or interfacing peripherals for
your electronics projects.

Supporting software
The PICAXE system allows the user to upload
BASIC programs from a PC to a PICAXE chip
via a serial connection. PICAXE comes with
a feature-rich development environment for
Windows called the programming editor,
allowing the user to quickly connect to, pro-
gram and debug PICAXE chips. A cross-plat-
form alternative to the programming editor
is available under the name AXEpad. AXEpad
provides the most important features of the

tions carried out per second are relatively
limited, rendering bit-banged communications
to interfaced devices infeasible. However, the
pre-programmed functions implement some
common bit-banged input/output functional-
ity, for instance enabling the PICAXE chip to
communicate with I2C peripherals or sending
and interpreting IR signals. The advantages
of using interpreted BASIC code for writing
PICAXE programs is the way the programs are
uploaded to the device. The interface required
to program regular Microchip PICs is complex
and hard to build and use, in comparison to
the PICAXE programming interface. PICAXE
projects commonly include a jack connected
to the chip’s serial interface pins, which allows
for quick and easy reprogramming of the chip
in the field. Just plug in the power and con-
nect the serial jack to a PC and you’re ready
to upload a program to your PICAXE chip.

Though the PICAXE BASIC programs can be
written and uploaded in a very short time,
complex mathematical operations requiring
thousands of clock cycles per calculation are
best not implemented using the real-time
interpreted BASIC code. The code would run
too slowly to be of any use in real-time sen-
sitive projects.

Alternatives to PICAXE
Regular Microchip PICs require a PIC pro-
grammer to upload new program code to
the device. Though projects such as the “el
cheapo” [4] can be used to decrease the price
of obtaining a PIC programmer, the cost and
complexity of starting a project to simply blink
an LED on a fresh PIC can be fairly intimidat-
ing to those just starting to get interested in
programming their own microcontroller. The
same goes for the Atmel AVR microcontrol-
lers. Though the Arduino project [5], con-
sisting of a Atmel AVR microcontroller on an
interfacing board together with an IDE and
documentation, also offers an easy way to
get started with microcontrollers, it’s more
expensive and difficult to implement in actual
projects in comparison to PICAXE.

Support and documentation
Because of the educational nature of the
PICAXE products, it’s no surprise extensive
documentation is available. The PICAXE man-
ual is included with the programming editor

Elektor•Post Project No. 8

elektor post | Project No. 8 | 3

ure 3). Though Revolution Education offers
starter packs that already include all neces-
sary interfacing electronics, this example will
show how to connect a PICAXE chip yourself,
on a breadboard. The pins relevant to our
setup are pins +V (1), 0 V (8), serial in (2),
serial out (7) and the output pin that connects
to the LED (3).

The blinking LED circuit is shown in Figure 4.
The power pins +V and 0V are connected to a
DC power supply from 3.0 V to 5.0 V. To use
one of the battery packs (for instance, from

programming editor, including: editing and
uploading code to the PICAXE chip, a termi-
nal window, and even several code generation
wizards. In comparison to the programming
editor, AXEpad does lack some features, for
instance the on-screen tool to test and step
through a simulation of a PICAXE program.

To use the editor, connect a PICAXE chip using
either the serial-to-jack or the USB-to-jack
cables (see Figure 2) and specify the serial
port the programming editor (or AXEpad)
should use to connect to the chip. To tell the
editor what kind of chip it is programming,
the PICAXE type is selected manually. The
program also offers a function to look up the
firmware version for a connected PICAXE chip.
Once the chip is connected, it is programmed
by uploading a written/loaded a BASIC pro-
gram from the editor directly to the PICAXE
chip. The new program starts running on the
PICAXE chip right away.

Blinking an LED
This simple example will show how to program
a PICAXE chip to blink an LED. A PICAXE 08M
is used in the example circuits, but the gen-
eral principle applies to every PICAXE chip.
Use the pinout diagrams [7] corresponding
to your PICAXE chip to select an output to
connect an LED to. In the case of the PICAXE
08M, pin 3 (C.4) was selected from the pin-
out of the PICAXE 08M2 (as depicted in Fig-

Figure 2.
USB-to-jack cable.

Figure 3.
Pinout of the PICAXE 08M2.

Figure 4.
Blinking LED circuit.

Elektor•Post Project No. 8

elektor post | Project No. 8 | 4

gram option or by pressing F5. The PC inter-
face shows the uploading progress and the
memory available on the PICAXE chip. Once
it’s done uploading, the “programming suc-
cessful” message shows that the uploading
process went OK. The new program starts
running on the PICAXE instantly, and the LED
should start flashing.

Adding a push button
The next example shows how to make the

the Revolution Education store), take care
to use no more than three 1.5 V AA batter-
ies or four 1.2 V AA rechargeable batteries.
The download circuit according to Figure 5
is connected to the serial in, serial out and
0 V pins on the PICAXE. The LED is connected
in series with a 330 Ω resistor from pin 3 to
ground. When the download cable is not con-
nected to a homemade circuit, the serial in
pin (2) must be pulled low by tying it to 0V
with a 33k resistor.

Programming the PICAXE
Install either AXEpad for GNU/Linux and Mac,
or the programming editor for Windows [8]. If
you’re using the USB to serial jack cable, some
operating systems require USB to serial driv-
ers before the cable can be used [9]. For this
example, the author is using AXEpad on GNU/
Linux, with an RS-232 serial cable connected
via 3.5-mm jack to a PICAXE 08M on a sol-
derless breadboard. Start the software a few
seconds after the serial cable/USB cable has
been connected to a powered PICAXE chip.
The correct PICAXE chip version and COM port
have to be specified before a program can
be uploaded. For AXEpad, select the correct
serial port in View ➞ Options ➞Tab:Port (if
you’re using the USB-to-serial cable, it will
be listed too). Test the connection by clicking
the Firmware button in the mode tab of the
View ➞ Options dialog.

After everything is set up correctly, the firm-
ware button on the mode tab returns the
type of chip that is currently connected. If
this type is not selected on the same tab, do
so now. Now we are ready to write our first
PICAXE program. Enter the code in Listing 1
in the editor. A note on the pin numbering:
the internal names for the pins can be con-
fusing. Some chips can have multiple inter-
nal IO blocks, requiring a prefix character to
show which block to select. In this example,
the author used the older 08M chip, and in
this version, no prefix character was needed
(for output 4 on pin 3: “high 4”) . If the code
from Listing 1 is giving you problems with your
version of the PICAXE chip, try adding the
prefix character according to your chips chip’s
pinout (for instance for pin 3, corresponding
to output 4 in a C block, “high C.4”). Now
upload the program to the PICAXE by clicking
the upload button, selecting the PICAXE->pro-

Listing 1: our very first PICAXE program

do ;repeat forever
 high 4 ;set output 4 high
 pause 1000 ;wait 1 second
 low 4 ;set output 4 low
 pause 1000 ;wait 1 second
loop

Listing 2: LED button switch

do ;repeat forever
 if pin3=0 then ;if the button is pressed
 high 4 ;light LED
 else ;if the button is NOT pressed
 low 4 ;turn off LED
 endif ;closes if statement
loop

Figure 5.
Download circuit.

Figure 6.
Push button circuit.

Elektor•Post Project No. 8

elektor post | Project No. 8 | 5

[6] www.picaxe.com/Getting-Started/
PICAXE-Manuals

[7] www.picaxe.com/What-is-PICAXE/
PICAXE-Pinouts

[8] www.picaxe.com/Software

[9] www.picaxe.com/Getting-Started/
Driver-Installation

PICAXE light an LED when a button is pushed.
Connect a push button to pin 4 of the PICAXE
chip (it’s called input 3 in the software), as
depicted in Figure 6. Use the code from
Listing 2 to program the PICAXE chip. After
uploading the code, the LED only lights when
the button is pushed down. The “if” statement
in the code checks if output 3 (on pin 4) is
pulled low by a closed switch. If so, it lights
the LED; if not, it turns the LED off. Figure
7 shows a breadboard version of a PICAXE
08M programmed with the code from Listing
2, disconnected from the programmer circuit.

The examples have shown just how easy get-
ting started with PICAXE can be. It’s not hard
to see how the range of components available
in the tech supplies web shop, together with
the extensive documentation provided by Rev-
olution Education, inspired many hobbyists to
start programming PICAXE microcontrollers
for their electronics projects.

(130137)

Internet Links

[1] www.picaxe.com

[2] www.picaxe.com/What-is-PICAXE/
PICAXE-Chip-Sizes

[3] www.techsupplies.co.uk/PICAXE

[4] www.rentron.com/myke4.htm

[5] www.arduino.cc

Figure 7. Push button setup ready with a PICAXE 08M in a breadboard.

