
Elektor•Post Project No. 5

elektor post | Project No. 5 | 1

There are 17 general purpose input / output
(GPIO) signals on the expansion header. Most
of these can have an alternative function.
These alternative functions provide a UART,
SPI and I2C interfaces — see Table 1.
Each GPIO pad can source between 2 and
16 mA depending on its drive strength con-
figuration. The drive strength is set in a con-
figuration register and by default after reset
the source current is set to 8 mA.
Revision 2 of the Raspberry Pi saw the intro-
duction of a second, smaller expansion header,
P5 — see Table 2. This adds another four
GPIO signals but more importantly for audio
aficionados it allows access to the PCM audio
interface of the Broadcom 2835 chip.
Besides adding a new expansion interface,
revision 2 Pis saw the signals for P1 Expan-
sion revised slightly, with the P1’s I2C0 inter-
face replaced by the I2C1 interface. A small
but important thing to remember if you are
planning to interface I2C devices to you Pi.

RPi Expansion Header:
double the taste
For hardware hackers everywhere, the Rasp-
berry Pi Expansion Header has to be the most
exciting thing on the Pi, after the Pi’s stupen-
dously low cost of course.
You’ll find expansion header in the corner
near the composite video connector. It’s a
hobbyist friendly double row, 13-way 0.1”
(2.54mm) pinheader connector so it makes
interfacing to it easy.

The 26-pin Expansion Header provides three
categories of signals:
•	Power: +5 V DC and 3.3 V DC* as well

as 0 V
(Please note that the 3.3 V rail can only
provide about 50 mA of current)

•	Input/Output: General Purpose Input/
Output (GPIO) signals

•	Communications Interfaces: Serial UART,
SPI and I2C

Raspberry Pi Recipes
Part #2
No harm in having
a few extra kitchen
appliances ready

In the first .POST on Rpi e-cookery we showed
how to install Raspbian and how to set up our
Raspberry Pi to get us started. As promised last
time, in this part we’ll be looking at the Expansion
Header of the Raspberry Pi and how to program the
GPIO pins we’ll find there. If you’ve read Elektor’s
March 2013 edition some of this may be familiar to you,
as we discussed the Expansion Port in the Raspberry Pi
Prototyping Board article [1].

By Tony Dixon (UK)

Elektor•Post Project No. 5

elektor post | Project No. 5 | 2

package [1] by typing the following:

wget http://pypi.python.org/
packages/source/R/RPi.GPIO/RPi.GPIO-
0.5.0a.tar.gz

Once downloaded, we’ll need to extract the
files. Type:

tar -zxf RPi.GPIO-0.5.0a.tar.gz

After this, a new a directory will be created
with the Python files in. Now type:

cd RPi.GPIO-0.5.0a

Now we’ll install the package by typing:

Installing Python’s GPIO Library
We are going to program our examples in
Python. Fortunately Python is installed as
standard in the Raspbian distribution but to
access the Pi’s GPIO we’ll need to install a
suitable hardware I/O library. There are a few
libraries we could use but we’ll be using the
Python RPi.GPIO library to give use access
to the GPIO pins.

If you’ve not already downloaded the Python
development tools or Python GPIO library then
using an LX Terminal (see Figure 1) on your
Pi, we’ll first download the Python develop-
ment tools by typing:

sudo apt-get install python-dev

Next, we’ll install the Python GPIO Library

Pin
Board Revision 1 Board Revision 2

Function Alternative Function Alternative
P1-01 3.3 V - 3.3 V -
P1-03 GPIO0 I2C0_SDA GPIO2 I2C1_SDA
P1-05 GPIO1 I2C0_SCL GPIO3 I2C1_SCL
P1-07 GPIO4 GPCLK0 GPIO4 GPCLK0
P1-09 GND - GND -
P1-11 GPIO17 RTS0 GPIO17 RTS0
P1-13 GPIO21 GPIO27
P1-15 GPIO22 GPIO22
P1-17 3.3 V - 3.3 V -
P1-19 GPIO10 SPI0_MOSI GPIO10 SPI0_MOSI
P1-21 GPIO9 SPI0_MISO GPIO9 SPI0_MISO
P1-23 GPIO11 SPI0_SCLK GPIO11 SPI0_SCLK
P1-25 GND - GND -

Pin Function Alternative RPi.GPIO

P1-02 5.0 V - -
P1-04 5.0 V - -
P1-06 GND - -
P1-08 GPIO14 UART0_TXD RPi.GPIO8
P1-10 GPIO15 UART0_RXD RPi.GPIO10
P1-12 GPIO18 PWM0 RPi.GPIO12
P1-14 GND - -
P1-16 GPIO23 RPi.GPIO16
P1-18 GPIO24 RPi.GPIO18
P1-20 GND - -
P1-22 GPIO25 RPi.GPIO22
P1-24 GPIO8 SPI0_CE0_N RPi.GPIO24
P1-26 GPIO7 SPI0_CE1_N RPi.GPIO26

Table 1. Expansion Header Pinout

Note: I2C0_SDA and I2C0_SCL (GPIO0 & GPIO1), and I2C1_SDA and I2C1_SCL (GPIO2 & GPIO3) have 1.8 kΩ (1k8) pull-up resistors to 3.3 V (3V3).

Table 2. P5 Header Pinouts
Pin Function Alternative
P5-01 5.0 V
P5-02 3.3 V
P5-03 GPIO28 PCM_CLK
P5-04 GPIO29 PCM_FS
P5-05 GPIO30 PCM_DIN
P5-06 GPIO31 PCM_DOUT
P5-07 GND
P5-08 GND

Figure 1.
LXTerminal

Elektor•Post Project No. 5

elektor post | Project No. 5 | 3

sudo python setup.py install

Once that’s done we should have the Python
RPi.GPIO library installed.

Example program: blinky.py
With RPi.GPIO installed we’re now going to
write a small test program to flash an LED.
Figure 2 shows our setup. We’ve used a
small breadboard (MiniPiio ProtoBoard [2])
with our Pi, and we’ve wired a LED and a
680 Ω resistor from GPIO17 (pin 11) to 0V.
After the components are fitted we’ll double
click IDLE icon on your Pi’s desktop to start
the Python Shell and IDE (Figure 3).

Select the File option from the menu and
create a new program. This will start the
IDE editor.

In the IDLE editor (Figure 4) type the pro-
gram as shown in Listing 1.

After typing the program, make sure you save
it, then switch to an LX Terminal and type the
following command to make your program
an executable:

chmod +x blinky.py

Once done, you can run your program by
typing the following command:

sudo ./blinky.py

Tip: if you start IDLE from an LXTerminal
session with sudo preceding the program
name e.g. sudo idle, you will have the cor-
rect permission to run your RPi.GPIO pro-
gram from within IDLE.

RPi.GPIO pin numbering
RPi.GPIO has two ways of numbering the GPIO
signal pins on the Raspberry Pi. So your RPi.
GPIO program must always specify a GPIO
number system, either GPIO.setmode(GPIO.
BOARD) or GPIO.setmode(GPIO.BCM).

The first is using the GPIO.setmode(GPIO.
BOARD) numbering system, which refers to
the pin numbers on the P1 expansion header
of the Raspberry Pi board. The advantage of

Figure 2.
Pi and breadboard.

Figure 3.
IDLE Python Shell.

Listing: blinky.py

!/usr/bin/python
import time
import RPi.GPIO as GPIO

Configure Pi’s GPIO pins
GPIO.setmode (BCM)
GPIO.setup (17,GPIO.OUT)

Program loop
while True :
 GPIO.output (17,True)
 time.sleep (1)
 GPIO.output (17,True)
 time.sleep (1)

Elektor•Post Project No. 5

elektor post | Project No. 5 | 4

this is you will not need to change your code
if any future changes are made to the signals
of the Raspberry Pi Expansion Header.
The second method is the GPIO.setmode(GPIO.
BCM) numbering, which references the Broad-
com 2835 signal names directly.
This can be a little confusing at times, so
Table 3 shows how P1 pin numbers, GPIO sig-
nal names and GPIO.setmode all fit together.

(130110)

Internet Links

[1] www.elektor.com/120483

[2] https://pypi.python.org/pypi/RPi.GPIO

[3] www.dtronixs.com

Table 3. GPIO.setmode(GPIO.BCM) and GPIO.setmode(GPIO.BOARD)
Pin Function GPIO.setmode

GPIO.BCM GPIO.BOARD
P1-01 3.3 V - -
P1-02 5.0 V - -
P1-03 GPIO0/2* 0/2 3
P1-04 5.0V - -
P1-05 GPIO1/3* 1/3 5
P1-06 GND - -
P1-07 GPIO4 4 7
P1-08 GPIO14 14 8
P1-09 GND - -
P1-10 GPIO15 15 10
P1-11 GPIO17 17 11
P1-12 GPIO18 18 12
P1-13 GPIO21/27* 21 13
P1-14 GND - -
P1-15 GPIO22 22 15
P1-16 GPIO23 23 16
P1-17 3.3 V - -
P1-18 GPIO24 24 18
P1-19 GPIO10 10 19
P1-20 GND - -
P1-21 GPIO9 9 21
P1-22 GPIO25 25 22
P1-23 GPIO11 11 23
P1-24 GPIO8 8 24
P1-25 0 V - -
P1-26 GPIO7 7 26
Note: * Revision 2 changes.

Figure 4.
IDLE Editor.

