
p. 10
Elektor’s Arduino
Training Board p. 24

Bringing the Human
Element to Manufacturing p. 32

Create Kinetic Sculptures

Retro Gaming
with Arduino

p. 4

Special edition
guest-edited by

www.elektormagazine.com

WK
01

DEC 2022/JAN 2023
ELEKTORMAGAZINE.COM

* S INC E 1 961
*

Declassified
Bonus Edition!

Articles for Pros, Makers, and Students!

A Controller
for Spotify

p. 14

Prototyping to Production

Connectivity Simplified

Home Automation

More information
www.elektor.com/arduino-magazine

Get it now! From
your favorite
newsstand or
buy in the Elektor
web stores!

DIY electronics
projects, engineering
insights, and more
from Arduino and
Elektor engineers

From Arduino and Elektor with Engineering Love

Direct links in
articles give you
easy access to
Arduino products
and solutions

Dive into hot topics
such as MicroPython,
TinyML, and home
automation with
Arduino

Get Started with
the Portenta x8

Get to know Arduino:
Insights from Fabio,
Massimo and David

Packed with projects
and tutorials

OUT NOW
A unique Elektor Magazine edition
curated by guest editor Arduino!

X

Guest edited by 6

EDITORIALCOLOPHON

51. Jahrgang, Nr. 573
Mai/Juni 2020
ISSN 0932-5468

Erscheinungsweise: 9x jährlich
(6x Elektor-Doppelheft + 3x Elektor Industry Magazin)

Verlag
Elektor-Verlag GmbH
Kackertstraße 10
52072 Aachen
Tel. 0241 95509190

Technische Fragen bitten wir per E-Mail an
redaktion@elektor.de zu richten.

Hauptsitz des Verlags
Elektor International Media
Postbus 11, 6114 ZG Susteren
Niederlande

Anzeigen
Margriet Debeij (verantwortlich)
Tel. 0241 95509174
Mobil: +49 170 5505396
E-Mail: margriet.debeij@elektor.com

Büsra Kas
Tel. 0241 95509178
E-Mail: busra.kas@elektor.com

Es gilt die Anzeigenpreisliste ab 01.01.2020.

Distribution
IPS Pressevertrieb GmbH
Postfach 12 11, 53334 Meckenheim
Tel. 02225 88010
Fax 02225 8801199

Druck
Pijper Media, Groningen (NL)

Der Herausgeber ist nicht verpflichtet, unverlangt einge-
sandte Manuskripte oder Geräte zurückzusenden. Auch
wird für diese Gegenstände keine Haftung übernommen.
Nimmt der Herausgeber einen Beitrag zur Verö!entli-
chung an, so erwirbt er gleichzeitig das Nachdruckrecht
für alle ausländischen Ausgaben inklusive Lizenzen. Die
in dieser Zeitschrift verö!entlichten Beiträge, insbeson-
dere alle Aufsätze und Artikel sowie alle Entwürfe, Pläne,
Zeichnungen einschließlich Platinen sind urheberrecht-
lich geschützt. Ihre auch teilweise Vervielfältigung und
Verbreitung ist grundsätzlich nur mit vorheriger schrift-
licher Zustimmung des Herausgebers gestattet. Die
verö!entlichten Schaltungen können unter Patent- oder
Gebrauchsmusterschutz stehen. Herstellen, Feilhalten,
Inverkehrbringen und gewerblicher Gebrauch der Bei-
träge sind nur mit Zustimmung des Verlages und ggf. des
Schutzrechts inhabers zulässig. Nur der private Gebrauch
ist frei. Bei den benutzten Warenbezeichnungen kann es
sich um geschützte Warenzeichen handeln, die nur mit
Zustimmung ihrer Inhaber warenzeichengemäß benutzt
werden dürfen. Die geltenden gesetzlichen Bestimmun-
gen hinsichtlich Bau, Erwerb und Betrieb von Sende- und
Empfangseinrichtungen und der elektrischen Sicherheit
sind unbedingt zu beachten. Eine Haftung des Heraus-
gebers für die Richtigkeit und Brauchbarkeit der veröf-
fentlichten Schaltungen und sonstigen Anordnungen
sowie für die Richtigkeit des technischen Inhalts der
verö!entlichten Aufsätze und sonstigen Beiträge ist aus-
geschlossen.

© 2020 elektor international media b.v.

Declassified
Bonus Edition!

THIS EDITION
4 Running Doom on a Portenta

Retro Gaming with Arduino

10 Crash Course Into the Arduino World

Expansion Board Uses the Arduino Nano

14 A Controller for Spotify

The Oplà IoT Kit Is (Almost) All You Need

20 Build, Deploy, and Maintain Scalable,

Secure Applications
With Arduino Portenta X8 Featuring NXP’s i.MX 8M
Mini Applications Processor and EdgeLock SE050
Secure Element

24 Bringing the Human Element
to Manufacturing
Meet Daria Baradel, the Person Responsible for
Production at Arduino

28 Development Boards
Past, Present, and Posterity

32 Flower Art from Muscle Wires
Kinetic Sculptures That Communicate With Sound

38 Product Catalog
Get Your Hands on New Arduino Products

The creative collaboration between Elektor
and Arduino did not end with the guest-edited
edition of Elektor Mag that we published in
early December 2022. We have more projects,
technical insights, and informative articles for
you to keep inspired for months to come. Over
the course of four weeks, we are declassify-
ing content in this edition until you have the
complete bonus magazine in early January
2023. What a great way to kick o! the new
year!

Whether you are a pro engineer working on a
new industrial product or a DIYer looking for
a fun weekend Arduino-based project, you

will find this extra edition of Elektor Mag infor-
mative and stimulating. We provide you with
articles on a wide range of Arduino-related
topics and projects, including retro gaming
with Arduino, an Elektor Arduino training
board, and a portable Arduino-based control-
ler for Spotify.

As you read the projects and articles in this
magazine, feel free to share your thoughts
with us at elektormagazine.com, arduino.cc,
and on social media. We look forward to your
feedback. Enjoy!

C. J. Abate (Content Director, Elektor)

Elektor Magazine, English edition

Volume 48, BONUS EDITION
December 2022 & January 2023
ISSN 1757-0875 (UK / US / ROW distribution)
www.elektor.com / www.elektormagazine.com

Head O!ice:
Elektor International Media b.v.
PO Box 11, 6114 JG Susteren (NL)
Phone: (+31) 46 4389444

Memberships: service@elektor.com
www.elektor.com/memberships

Advertising & Sponsoring:
Raoul Morreau: raoul.morreau@elektor.com
Phone: +31 (0)6 4403 9907

The Team:
International Editor-in-Chief: Jens Nickel
Content Director: C. J. Abate
International Editorial Sta!:
Eric Bogers, Jan Buiting, Stuart Cording,
Rolf Gerstendorf, Alina Neacsu,
Dr Thomas Scherer, Brian Tristam Williams
Laboratory Sta!: Mathias Claussen,
Ton Giesberts, Luc Lemmens, Clemens Valens
Graphic Design & Prepress: Harmen Heida,
Sylvia Sopamena, Patrick Wielders
Publisher: Erik Jansen

Elektor uses in its publications only own
content (text and images) or with permis-
sion of the creator. Content supplied by third
parties is always checked for copyright before
publication. If the copyright holder is unknown,
we make every e!ort to trace him or her and
compensate according to market standards.
Unfortunately, it is not always possible to
trace the actual copyright holder. If you come
across this and you are or can identify the
‘unknown copyright holder’, please contact
editor@elektor.com.

Copyright Notice
The circuits described in this magazine are
for domestic and educational use only. All
drawings, photographs, printed circuit board
layouts, programmed integrated circuits, disks,
CD-ROMs, DVDs, software carriers, and article
texts published in our books and magazines
(other than third-party advertisements) are
copyright Elektor International Media b.v. and
may not be reproduced or transmitted in any
form or by any means, including photocopy-
ing, scanning and recording, in whole or in
part without prior written permission from the
Publisher. Such written permission must also
be obtained before any part of this publication
is stored in a retrieval system of any nature.
Patent protection may exist in respect of
circuits, devices, components etc. described
in this magazine. The Publisher does not
accept responsibility for failing to identify such
patent(s) or other protection. The Publisher
disclaims any responsibility for the safe and
proper function of reader-assembled projects
based upon or from schematics, descriptions
or information published in or in relation with
Elektor magazine.

© Elektor International Media b.v. 2022
Printed in the Netherlands

COLOPHON

4 www.elektormagazine.comlektor

the player is meant to navigate a 3D space and confront di!erent
enemies using di!erent weapons and ammunition that can also
be found all over the game’s battle"eld. Doom has been ported
to all operating systems but also runs on bare metal on multiple
systems. The source code is open, currently licensed under GPL.
While it is not trivial to compile it, we have seen versions of Doom
run on very small computers and also inside other programs. At
some point, Microsoft O#ce’s Excel 95 made a homage to Doom
in the form of a playable easter egg to be found in the software’s
credits page.

The game has become a way to both check the performance of
small computers and to display hacking wizardry. A few months
ago, at DEF CON 22 in Las Vegas, the hacker known as @sickcodes
on Twitter and GitHub demoed Doom on a John Deere tractor
modded to include farm-related graphics. Arduino is no excep-
tion. And when the "rst prototype of the Portenta H7 — our most
powerful board to that point in 2018 — came out, we used Doom
to test the technical capabilities of the board. I recently invited

With Martino Facchin
Senior Firmware Engineer, Arduino

By David Cuartielles (Arduino)

You can run Doom on an Arduino
Portenta H7. Curious how it’s
done? Want to know why Arduino
engineers ran the game on it in the
"rst place? Martino Facchin, head
of Arduino’s "rmware team, has
the answers.

Running Doom on a Portenta
Retro Gaming with Arduino

You can run Doom on a Portenta!

Doom is probably the most sold game in history, with sales of over
3.5 million copies. At a retail price of $50 (USD), the Doom develop-
ers, forming a small company called id Software, became million-
aires overnight. When Doom was released in 1993, id Software
had already been out with another well-known game for about a
year, Wolfenstein 3D. Doom is a "rst-person shooter game, where

Guest edited by 5

Facchin: I am head of "rmware — the main guy when you need
some "rmware help. Now, I have a wonderful team of colleagues
that help me with this, because I started this team just by myself.
The team keeps on growing. We try to also make the community
grow with us by making everyone more aware of what we are doing.

Cuartielles: Besides making Doom run on a Portenta
(something we will talk about more later), what is the thing
you made at Arduino that makes you the most proud?

Facchin: I’d say that it’s the PluggableUSB framework. When I
just came to Arduino, having been there for six months, we had
this big issue of people willing to add multiple functionalities to
the USB port of the Arduino Due and the — by then — forthcom-
ing Arduino Zero. Every time people were plugging an Arduino
Leonardo into a computer, it was bringing up the keyboard drivers,
the mouse drivers, etc., even if you were not using them. We had
to build this thing on the %y, a USB descriptor that would help the
users see just the things they wanted to use at the time. At once, we
also allowed for other things to happen, things that people wanted
to use such as USB MIDI and the like. For me, this was a huge devel-
opment. I was pretty young at the time and had to interact with the
community with the help of Matthijs Kooijman (read more about
his work at www.stderr.nl) and Paul Sto!regen (creator of Teensy)
to sort out the best possible strategy. And it worked. Every now
and then, people come and say, “I used the MIDI library for this or
that,” or there is even a developer now making all of the layouts
for all international keyboards built on top of the foundations of
that code. I am very proud of that.

Cuartielles: You said that you were “pretty young at the time.”
For how long have you been working for Arduino?

Facchin: Six and a half years, now. Based at the Torino o#ce.

Cuartielles: That’s quite some time. And how many people are
involved with the Firmware team?

Facchin: Six people. It might seem like a lot, but at the Firmware
team, we maintain all of the products, while also performing
other activities such as certi"cation. On the other hand, we have

Martino Facchin, head of Arduino’s "rmware team, to tell us more
about this story and how it was done.

David Cuartielles: Let’s talk about the Arduino Portenta H7
running Doom. I have prepared a little summary of the history
of Doom, how the guys at the id Software company made the
game, how it sold like crazy, and how the makers became
millionaires.

Martino Facchin: And then they published the source code —
the most important thing.

Cuartielles: Exactly! They published the source code, but under
which license did they publish it?

Facchin: I’ve got to check, but I think it is a license which is compat-
ible with GPL, the Doom Source Code Licence. The important thing
is that only the engine is open source. The assets are closed, and,
in fact, you can only play the shareware version of Doom, so you
cannot really play the full game unless you bought it.

Cuartielles: The cool thing with this game is that people were
making their own mods. I remember a version of Wolfenstein
3D with Star Wars characters.

Facchin: I don’t remember that.

Cuartielles: I am that old. I remember for the both of us.

Facchin: Well, I recall playing Wolfenstein 3D when I was a child.
But we didn’t have an Internet connection, so we couldn’t get all
of these goodies from the modders’ community.

Cuartielles: Before we continue, let me ask you !rst. Could
you introduce yourself ?

Facchin: [laughs] Martino Facchin, "rmware engineer at Arduino.

Cuartielles: What is your role in Arduino?

A Note from David
I went to check this because I wanted to be sure
about it, and in 1997, id Software published Doom
under the above-mentioned licence, which was
opening up the source for educational purposes.
After an accident that happened to the maintainers
of glDoom, which left the world without a copy
of the openGL port Doom because of the non-
distribution clause in the Doom licence, id Software
agreed to modify the licence to GPL.

The obvious choice
was to port Doom and
try to instrument all
the features that were
needed for it to run.

6 www.elektormagazine.comlektor

as expected, so I went for something with moving images that I
could easily recognise.

The obvious choice was to port Doom and try to instrument all the
features that were needed for it to run. It took very low e!ort to
make it work on something without an operating system. It is not
really the fork of Doom you would play, but it is very easy to port.
You just need to change six or seven functions to adapt it to your
hardware and you are ready to go. To begin with, we had no code to
run the internal RAM or the external memory. I had to get those to
work "rst and then "re up the simulator. From the beginning, we

separated Firmware from Tooling, which is a different team,
dedicated to the Arduino CLI and other parts of the higher end
software.

Cuartielles: And all developers work against GitHub, correct?

Facchin: Yes, everything is open sourced by the end of the devel-
opment process.

Cuartielles: Great. Let’s go back to talk about Doom. We know
that it was a very successful game that sold over 3.5 million
units, making their developers !lthy rich. It was the !rst
best-seller !rst-person shooter (FPS) game. The code was open
sourced and was ported to all kinds of devices.

Facchin: Phones, calculators, every operating system.

Cuartielles: And Arduino’s Portenta H7, a dual core processor
board aimed at industrial environments. Who had the idea of
running Doom on the Portenta H7?

Facchin: It was more that we had just got the "rst prototype of
the Portenta H7, a nice board with a lot of chips, and everything
was still to be done. We had this chip from Analogix that you can
typically "nd in other devices that converts MIPI signals into
DisplayPort, which would allow it to address external monitors.
We had no experience in the subsystems in the chip that should be
handling this, and the existing examples were not helping either. At
"rst, we managed to render some yellow boxes on the screen, then
the Arduino logo with a few artefacts, but it was far from perfect.
We were not really understanding why things were not working

How to run Doom in your Portenta H7
1. Download the latest version of the Arduino IDE. We

recommend Arduino 2.0 or more recent.
2. Download the Portenta core from the board manager.
3. Select the M7 core for your Portenta H7 board. All of the

following steps have to be executed on that core.
4. Make sure the IDE has identified the port here the board is

connected to.
5. There is an example at “Examples / Doom” where you can

see the basic instructions. Before you install this, you need
to run a couple of examples on your board.

6. [Optional] Upgrade your Portenta H7 bootloader to the
latest version with “Examples / STM32H747_System /
STM32H747_manageBootloader”.

7. Format the external Flash using the example “Examples /
STM32H747_System / QSPIFormat.” After the installation,
you will have to open the serial terminal and follow the
instructions given to you in it.

8. Transform your board into a mass storage device as if it

was a USB drive with “Examples / USB As Mass Storage /
AccessFlashAsUSBDisk.”

9. Open the Serial monitor and choose how the formatting of
the board should proceed. Once it is done, your computer
should register two new external drives connected to it.

10. Download DOOM1.WAD from the DoomWiki site at: https://
doomwiki.org/wiki/DOOM1.WAD and copy it in the largest
partition of the virtual Portenta drive.

11. Go back to the Doom.ino example we saw on step 5
and flash it on your board, remember: always on the M7
core. If you had problems seeing the programming port,
just double click the reset button on your Portenta prior
to uploading and make sure the serial port is properly
recognized.

12. Disconnect the Portenta H7 from your computer and plug
it to a USB-C hub as if it was a laptop. The hub will need to
have the external power connected and an HDMI cable to
send the video signal to a computer monitor.

It is up to the reader to take over the project and add controls to make the
game playable.

Guest edited by 7

Cuartielles: Wouldn’t it be cool to have a professional PLC
based on Portenta H7 where you could be playing Doom on
the Cortex M4 core while doing the serious work on the M7?

Facchin: Absolutely!

Cuartielles: Thanks, Martino. It was great to hear the story of
Doom running on Arduino Portenta H7. We will share with
our community the basic instructions on how to get it up and
running. It is up to the reader to take over the project and add
controls in order to make the game playable.

220542-01

About the Author
David Cuartielles co-founded Arduino. He holds a PhD in Interac-
tion Design and an MSc in Telecommunications Engineering, and
he teaches at Malmö University.

Questions or Comments?
Do you have any questions or comments relating to this article?
Contact the team at Elektor at editor@elektor.com.

Related Products

 > Arduino Portenta H7
www.elektormagazine.com/arduino-portenta-h7

didn’t get video to work, I had to prepare a framebu!er, do some
magic, and get some proper output over USB-C.

Cuartielles: The Portenta H7 is a dual-core processor. It has an
Arm Cortex M4 and an M7 inside the processor. Which one
was the one running Doom?

Facchin: Today we use the M7, but back then we ran it on the M4,
because it was much simpler from an embedded programmer point
of view. It is more like a typical microcontroller, without any special
features. On the other hand, the M7 has this cache that you have to
look into and invalidate at the right time when generating video.
The "rst time I tried to run things on the M7, it was real fast, but
also completely broken, and I could not see anything on the screen.
The M4 was fast enough (25 frames per second) and pixel perfect.

Cuartielles: 25 fps is a lot faster than my !rst computer. But
let’s summarise this for the reader: You had Doom running
in the slowest of the two processors, on a board which has
Bluetooth, Wi-Fi as connectivity. Video is sent out via USB-C.
There you can have a hub, mouse, keyboard, whatever. Which
were the controls you implemented there?

Facchin: Unfortunately, the project died there for us, because once
we saw we could make video run, we started working with LVGL,
which is a much more useful library for other developers to build
applications on top of Portenta. LVGL is completely integrated
with the USB hub, keyboard and mouse, so that you can build all
needed interfaces for the professional context that many of Ardui-
no’s end users need.

Doom is a classic!

The Elektor web archive from 1974!
8x Elektor Magazine (print)
8x Elektor Magazine (digital)
10% discount in our web shop and exclusive offers
Access to more than 5,000 Gerber files
Free shipping within US, UK & Ireland

Gold Green

Join the
Elektor
C mmunity

Use the coupon code:

ARDUINO22

20%20%
discount

on the first year of
your membership

Take out a or
a GREENGREEN

m e m b e r s h i p membership!
GOLDGOLD
m e m b e r s h i p

www.elektormagazine.com/arduino-member

X

Guest edited by 9

Would you like to unbox the Elektor LCR Meter
Kit with Arduino co-founder David Cuartielles?
Watch the January 26, 2023 (18:00 CET) episode of
Elektor Lab Talk, where he will join Elektor engineer

Mathias Claussen and Editor Jens Nickel to
discuss the LCR Meter Kit, as well as take

your questions about the Arduino
technology and this guest-edited

edition of Elektor. Don’t miss the
livestream. Bring your questions!

220555-01

UNDER THE HOOD

Watch David live on Elektor Lab Talk on January 26, 2023!

Unboxing
Save the date: January 26, 2023

the Elektor LCR METER
with David Cuartielles

www.elektormagazine.com/labtalk-david

10 www.elektormagazine.comlektor

means to an end. You can of course connect
up all the peripherals you need for a partic-
ular project using a prototyping plug board
(Figure 1). This approach gives you maximum
freedom to install peripherals and connect
signals wherever you want. That’s not always a
good idea, especially when you are just start-
ing out. The layout can quickly grow in size so
you end up with a rat’s nest of Dupont jumper
leads. Often you’ll spend more time debug-
ging the hardware and sorting out wiring
errors than actually writing code. This only
increases the frustration level, and correct-
ing dumb errors won’t necessarily teach you
anything useful.

The MCCAB Training Board
To get around these hurdles, we have devel-
oped the Elektor Arduino training board,

You might say the “Arduino philosophy” is
associated with a hardware-near design
approach: in most cases, the Arduino software
or sketch accesses components such as
switches, pushbuttons, potentiometers, LEDs,
LC displays, piezo buzzers, driver transistors
etc via the microcontroller GPIOs. Other types
of peripheral devices or electronic modules
such as sensors, display or driver boards use
various serial interfaces such as SPI, I2C or
1-wire bus to communicate with the controller.
In order to familiarize yourself with the world
of microcontrollers and Arduino boards, you
need to build new practice circuits and control
them using an Arduino board.

The essence, however, of any project based
on Arduino hardware is development of the
software (sketch). The hardware is only a

TRAINING

By Wolfgang Trampert (Germany)

Elektor remains true to its educational mission:
here we present a brand new training board with
an Arduino Nano at its heart. Together with a
well-structured, hands-on training course, it
provides an ideal platform to upgrade your skills
and to explore the world of microcontrollers.

Crash Course Into the
Arduino World

Development Board for the Arduino Nano

Editor’s Note
At the time of publication, the book associated with this kit is
available in German only. Translations are planned for the near
future. Once finished, the translated version will be available in the
Elektor Store.

Figure 1: Typical plugboard circuit layout for an
Arduino sketch.

Guest edited by 11

also known as the MCCAB Training Board
(Figure 2). At its heart is an Arduino Nano
board which plugs onto the MCCAB training
board. Alongside this are many of the basic
peripheral devices you would generally need
to build a new prototype for many applications
such as a lab setup, test and experimental
circuits, projects and exercises to support your
studies and training and also hobby projects.
The microcontroller GPIOs are all available on
two pin header strips on the MCCAB Training
Board which gives the board maximum deploy-
ment flexibility. Additional peripherals or exter-
nal signals can be hooked up using Dupont
jumper leads as required. You won’t need to
worry about incorrectly wiring the on-board
peripherals and will spend less time rummaging
through boxes of spare parts to find that elusive
component you need to complete a circuit.

Additional circuits built on breadboards
can also be easily connected using Dupont
cables, since all GPIOs of the microcontrol-
ler on the Arduino Nano are connected to
the two header strips SV5 and SV6 on the
MCCAB training board (pointers 3 and 7 in
Figure 2). Running down the left hand edge
of the board you can also see the double
row 26-pin right-angled pin header connec-
tor SV2 (pointer 26 in Figure 2) where an
external expansion PCB can be plugged in.

This connector provides all the important
GPIO signals from the microcontroller. Exter-
nal boards to implement functions such as
an electronic component curve tracer, a lab
power supply or a tra"ic light controller can
be docked to the MCCAB training board here
and be controlled by it. Information and results
from a running sketch can be written to the
on-board 2×16 character LCD (pointer 18),
which interfaces via the board’s I2C bus. Also
on board is a 3×3 LED matrix (pointer 27).

The MCCAB training board is powered by
a supply of Vcc = +5 V. This will usually be
provided by the USB cable plugged into your
PC which you need for creating and upload-
ing the exercise sketch to the MCCAB. The
MCCAB can also be powered from an exter-
nal power pack.

In the Training Board schematic (Figure 2),
all components associated with a specific
board function are identified using a common
background colour.

The MCCAB_Lib Library for use
with the Training Boards
Software development involves using the
Arduino IDE to write the program (or ‘Sketch’
in Arduino speak) which tells the microcontrol-
ler how to behave. The sketch is then compiled

Figure 2: The MCCAB training board, Rev. 3.3.

The MCCAB training board controls
and indicators

1 11 × LED (status indication of
input/outputs D2 to D12)

2 Connector linking LEDs LD10 to
LD20 with GPIOs D2 to D12

3 Microcontroller inputs and outputs
4 RESET button
5 Arduino NANO with mini USB

socket
6 LED L, linked to GPIO D13
7 Microcontroller GPIOs
8 Potentiometer P1
9 Supply voltage to P1 and P2

10 Potentiometer P2
11 Signal at pin X of SV12
12 SPI-Interface 5 V (The signal at

pin X is selected by JP4)
13 SPI-Interface 3.3 V
14 I2C-Interface 5 V
15 I2C-Interface 3.3 V
16 I2C-Interface 3.3 V
17 Switch output for external

equipment
18 2×16 character LCD
19 6 × Pushbuttons K1 to K6
20 6 × slider switches S1 to S6
21 Pin header to link switches to

microcontroller GPIOs
22 Supply voltage distributor
23 Buzzer1
24 Switch output for equipment
25 3×3 LED matrix columns
26 2×13 pin header strip to connect

an external module
27 3×3 LED matrix (red)
28 Connections of 3x3 matrix rows to

D3, D4 and D5
29 Jumper position links Buzzer1 to

GPIO D9

12 www.elektormagazine.comlektor

for switch debouncing, generating multiplex
control signals for the 3×3 LED matrix and
flashing the LEDs LD10 to LD20 or L, or even
generating the buzzer tone frequencies. The
library functions do this automatically in the
background of the program flow, unnoticed
by the user.

Listing 1 is a small example sketch to demon-
strate use of the MCCAB_Lib library.

In line 15 of the sketch, the object variable Led
is declared of the Class LED from the library
MCCAB_Lib. The parameter LED_PIN passed
in the declaration of the object variable Led
is defined as a constant in line 13 indicating
the pin to which the LED is connected. This
pin is automatically configured as an output
during instantiation.

The object variable Key of the class KeySwitch
from the MCCAB_Lib library (declared in
line 22) during execution monitors (in the
background) the state of the switch input on

the extensive hardware peripherals on the
MCCAB training board. The library can be
downloaded free of charge and integrated into
your own sketch. This library makes handling
the on board peripherals much easier.

The library MCCAB_Lib contains five classes
for controlling the switches, LEDs and buzzer
on the training board and can be easily
included into the user’s sketch as required.
Table 1 shows a list of the classes available.

Using this library means the user does not
have to worry about defining time periods

and uploaded to the Arduino Nano’s micro-
controller on the training board via a mini
USB cable.

The microcontroller GPIOs can be config-
ured as usual using the Arduino function
pinMode() and the value of signals to and
from components on the training board can
be read or controlled using digitalRead(),
digitalWrite(), analogRead() etc.

However, a library called MCCAB_Lib [1] is
available which supports the developer by
providing additional commands to control

Table 1: Classes available in the MCCAB_Lib library.

Class Usage
KeySwitch Debounced status of switches S1 to S6 and pushbuttons K1 to K6
Matrix Control of the 3×3 LED matrix.
LED On / o# / blink control of the 12 LEDs LD10 to LD20 and LED
LedBlock Output a bit pattern on all 11 LEDs (LD10 to LD20)
Sound Control of Buzzer1 and square wave signal generator.

Listing 1.
/*
* Sketch which uses pushbutton K4 to toggle LED LD10 on and off using object variables in the
“KeySwitch” und “LED” classes in the MCCAB_Lib library.

* To read the status of pushbutton K4 its necessary to insert a jumper to link position S+K4 (the switch
connection) with A3 (GPIO A3 of the microcontroller)on double header strip JP2 of the MCCAB.

* Insert another jumper (in position D2 of the double header strip J6) to link LED LD10 with the
microcontroller GPIO of the MCCAB.

*/

11 #include <MCCAB_Lib.h> // bind the MCCAB_Lib Library to the Sketch
12
13 #define LED_PIN 2 // the LED is connected to pin D2
14
15 LED Led(LED_PIN); // Object-Variable
16
17 //function called by the object-variable “Key” when the switch is closed.
18 void switchTurnedOn() {
19 Led.toggle(); // toggle or flip the state of the LED
20 }
21
22 KeySwitch Key(SK4, ACTIVE_HIGH, switchTurnedOn, nullptr); // Object-Variable
23
24 void setup() { } // nothing to do here...
26 void loop() { } // or here

Guest edited by 13

Questions or comments?
If you have technical questions, feel free
to email the Elektor editorial team at
editor@elektor.com.

About the Author
Wolfgang Trampert has been developing
and programming microcontroller systems
since he finished his studies in electron-
ics. His engineering business developed
microcontroller based solutions to meet
customer requirements. He has authored a
number of specialist books and articles and
conducts training courses on the subject
of microcontrollers.

Related Products

 > MCCAB Training Board
(SKU 20295)
www.elektor.com/20295

 > Mikrocontroller-Praxiskurs für
Arduino-Einsteiger (Book in
German, SKU 20293)
www.elektor.de/20293

12 Project Sketches and
46 Exercises
A detailed instruction manual for the
MCCAB training board is available and can
be downloaded from the website [1]. The
MCCAB training board and the MCCAB_Lib
library will also be described in detail in an
upcoming book which will be available shortly
(see editor’s note).

The book explains in detail the hardware and
software basics of a microcontroller system
and introduces the programming language C,
which is used to write Arduino sketches.

The book’s principle focus is on practical
exercises, so that “learning by doing” is the
key concept used here to acquire the skills
you will need when you go on to build your
own projects. In a comprehensive practical
section, there are 12 project sketches and
46 exercises, so that your knowledge builds
as you work through the many examples. The
exercises are structured in such a way that
the reader is given a task that needs to be
solved with the MCCAB training board using
the knowledge gained from the theory section
of the book. For each exercise there is then
a detailed explanation and well-commented
example solution that help solve problems.

220450-01

pin SK4, which is passed to it as a parame-
ter according to its declaration. It performs
switch debouncing when the pushbutton K4
is pressed or released and calls the function
switchTurnedOn() when the button is
pressed. The toggle() method of the class
LED from the MCCAB_Lib library is activated
in the switchTurnedOn() function in line 19 to
invert the current state of the LD10 light-emit-
ting diode.

Since the connection pins for the switch and
LED are automatically configured as input and
output when the objects are declared nothing
else needs to be done in the setup() function
in line 24 in this sketch.

The loop() function in line 26 also does
not contain any instructions because the
only action to be performed in this sketch
is to switch the LED state when the K4
button is pressed. This action is event-
driven by the KeySwitch class by calling the
switchTurnedOn() function.

Using these classes in the library MCCAB_Lib
in more extensive sketches, the two functions
setup() and loop() of the standard Arduino
software model would not need be required
to continually poll the state of peripheral
components, thereby freeing them up for
more important tasks.

[1] The MCCAB_Lib Library:
http://www.elektor.de/20295

WEB LINK

X

Arduino & Co – Measure, Control, and Hack

With a simple Pro Mini board and a few other components, projects
that 20 or 30 years ago were unthinkable (or would have cost a small
fortune) are realized easily and a! ordably in this book: From simple
LED e! ects to a full battery charging and testing station that will put a
rechargeable through its paces, there’s something for everyone.

www.elektor.com/20243

14 www.elektormagazine.comlektor

The Arduino MKR WiFi 1010 Maker Board is — thanks to
its Wi-Fi capabilities — a perfect brain for your next IoT
project. You are even better equipped with the Arduino
Oplà IoT kit, which contains this Maker Board and a
carrier board (Figure 1). The latter integrates relays, a
round shaped OLED display and capacitive touch buttons.

Also in the kit is a moisture and a PIR sensor (Figure 2).
Projects such as home security alarms and automatic
plant watering are therefore easy to implement.

The Wi-Fi feature also allows you to control programs
running on your PC, if they have a network interface.
The touch buttons, the display, the battery socket, and
a housing make it easy to design a portable controller
for di"erent kinds of PC software — as an addition to a
mouse and keyboard (Figure 3).

I am a fan of the music player Spotify, and so I used
the Oplà kit to build my own wireless Spotify controller.
You can press buttons to skip to the next and previous
song, play/pause a song, and increase and decrease the
volume. To do so, it goes without saying that the Spotify
player must be started on your PC or smartphone.

Secure Communication
Spotify comes with an easy-to-handle programming
interface to control your Spotify player via the network;
however, you will need the Spotify Plus license for it. Of
course, some security is needed. To use the Spotify web
API, which is based on REST, you have to authenticate
first at the Spotify Accounts Server with your Spotify
login username and password. Once authenticated, your
software has to send a Client ID and a Client Secret. The
Spotify server will return an access token, which you
have to send with each call of the Web API to control
your Spotify player. This two-step authentication flow is
based on the popular OAuth2 process (see Figure 4).

PROJECT

By Altuğ Bakan (Turkey)

The Arduino Oplà IoT kit contains the MKR WiFi
1010 Maker Board and a carrier board that integrates

relays, a round-shaped OLED display, capacitive touch
buttons, and some sensors. Here we describe how

to build a portable controller for the popular Spotify
music player. Of course, some security is needed.

A Controller For

Spotify
The Oplà IoT Kit Is

(Almost) All You Need

Figure 1: The MKR
WiFi 1010 Maker Board

is put on the carrier
board, which integrates
relays and other useful

peripherals.

Guest edited by 15

Figure 3: The battery
socket makes the Oplà
IoT Kit portable.

Figure 4: The multi-
step-authentication
flow is based on the
popular OAuth 2.0
process.

Figure 2: The Arduino Oplà IoT kit.

16 www.elektormagazine.comlektor

Authentication
To start the OAuth2 flow, you have to authenticate at
Spotify. When starting the Spotify controller described
here, it will log in the specified (home) Wi-Fi network
and show the IP address it got by the router on the
OLED display. I wanted to give the user a chance to
easily authenticate at Spotify, so I created the follow-
ing approach. The Arduino Controller generates a

How do you get your Client ID and Secret? Just use the
Spotify App Builder [1], which you can use to design
your own PC software or mobile App to control Spotify
(Figure 5). However, we don’t do this here; we just want
the credentials (see Figure 6). Client ID and Secret must
be stored on our Arduino MKR Board. Of course, you
could do this hardcoded in the Arduino sketch, but there
is a more comfortable and more secure way to do so. The
Arduino Web Editor [2] provides a Secrets tab, where you
can set environmental variables to be later used in your
code (Figure 7). Just enter the Spotify Client ID and the
Secret as well as your Wi-Fi network name and password
in the fields of the tab. If you compile and upload the
software to the controller, your individual secret values
will be also uploaded to be used by the project’s code.
In your sketch you have to replace the strings containing
sensitive data by writing a SECRET_xxx expression — so,
for example: SECRET_SPOTIFY_CLIENT.

Figure 8: Webpage o"ered by the controller to log in at Spotify.

Figure 7: Enter all private values in the Secrets Tab of the
Arduino Web Editor, before compiling and uploading the
code.

Figure 5: You have to create an “App” to get ...

Figure 6: ...your Client ID and Client Secret.

Guest edited by 17

Figure 9: If you are logged in at
Spotify, you have to give the controller
permission to act on your behalf.

Figure 10: Redirect URL: The
address of the controller in
your home network.

small webpage which will be shown in a web browser,
when you enter the IP address of your controller there
(Figure 8). This small webpage contains a weblink.
(Refer to Listing 1 to see how the webpage is generated
in the Arduino code.) If pressed, the browser goes to the
authentication page at Spotify, where you easily can log in.
You will then be asked if you give the controller permis-
sion to control Spotify (Figure 9).

Listing 1: Webpage to authenticate at Spotify, o!ered by the Spotify controller.
String webpage = "<!DOCTYPE html>\n";
webpage += "<html><body>";
webpage += getStyle();
webpage += "<a href=\"https://accounts.spotify.com/authorize?client_id=";
webpage += SPOTIFY_CLIENT;
webpage += "&response_type=code&redirect_uri=http://";
webpage += ip_address;
webpage += "/redirect/&scope=user-read-playback-state user-modify-playback-state\">Authenticate Spotify\n";
webpage += "</body></html>";
wifiClient.print(webpage);

Please note: To get all this working, you also have to enter
the IP address of the controller as a “Redirect URI” in the
Spotify App editor (Figure 10).

From now on the Arduino Controller can get the API access
token with sending the Client ID and Secret to Spotify
(Listing 2). The access token must be regularly refreshed
during operation. This is also done by a function in the
sketch (Listing 3), which is called every 3000 seconds.

18 www.elektormagazine.comlektor

Listing 3: Function to refresh the token.
// Refresh the user authentication token
 void refreshAccessToken() {
 String postData = "grant_type=refresh_token&refresh_token=" + refreshToken;
 authClient.beginRequest();
 authClient.post("/api/token");
 authClient.sendHeader("Content-Type", "application/x-www-form-urlencoded");
 authClient.sendHeader("Content-Length", postData.length());
 authClient.sendBasicAuth(SPOTIFY_CLIENT, SPOTIFY_SECRET);
 // send the client id and secret for authentication
 authClient.beginBody();
 authClient.print(postData);
 authClient.endRequest();

 // If successful
 if (authClient.responseStatusCode() == 200) {
 lastTokenTime = millis();
 DynamicJsonDocument json(256);
 deserializeJson(json, authClient.responseBody());
 accessToken = json["access_token"].as<String>();
 }
 }

Listing 2: Function to get the token from Spotify for further use of the API.
// Get the user authorization token
 bool getAccessToken(String userCode) {
 String postData = "grant_type=authorization_code&code=" + userCode + "&redirect_uri="
 "http://" + ip_address + "/redirect/";
 authClient.beginRequest();
 authClient.post("/api/token");
 authClient.sendHeader("Content-Type", "application/x-www-form-urlencoded");
 authClient.sendHeader("Content-Length", postData.length());
 authClient.sendBasicAuth(SPOTIFY_CLIENT, SPOTIFY_SECRET);
 // send the client id and secret for authentication
 authClient.beginBody();
 authClient.print(postData);
 authClient.endRequest();

 // If successful
 if (authClient.responseStatusCode() == 200) {
 lastTokenTime = millis();
 DynamicJsonDocument json(512);
 deserializeJson(json, authClient.responseBody());
 accessToken = json["access_token"].as<String>();
 refreshToken = json["refresh_token"].as<String>();
 return true;
 }
 return false;
 }

Guest edited by 19

Operation
The rest of the code is less complex. The device will
show the Spotify logo and the function of the buttons
on the OLED display (Figure 11). If the user touches a
button, the corresponding API function is called. Refer
to Listing 4 to see how this is done for skipping a song
to the previous or next one.

There is also a function in the code which requests the
status of the player from the Spotify API. The answer
is a JSON string. I am using the ArduinoJson.h library
and some of my own functions to process JSON strings
more easily.

To get the status of the buttons, to control the LEDs, and
to show graphics on the OLED, I am using the Arduino_
MKRIoTCarrier.h library. You can dive into my code to get
inspiration for your own projects you can do with the Oplà
Kit. My software can be downloaded at [3].

Cloud Connection
I also set up a connection to the Arduino Cloud and
created a dashboard that shows the current song and
artist name next to the volume of the device (Figure 12).
Of course you can create your own personal dashboard,
with the data you want.

My project won the 3rd place award in the Arduino Cloud
Games 2022!

220407-01

[1] Spotify App Builder: https://developer.spotify.com/dashboard/
[2] Arduino Web Editor: https://create.arduino.cc/editor
[3] This Project on create.arduino.cc: https://create.arduino.cc/projecthub/Altug/opla-spotify-controller-6e7bc4

WEB LINKS

Related Products

 > Arduino Oplà IoT Kit
www.elektormagazine.com/arduino-opla-iot-kit

Figure 12: Current song
and artist name are
sent to the Arduino
Cloud, where they are
visible on your personal
dashboard.

Questions or Comments?
If you have technical questions feel free to e-mail the
author at mail@alt.ug or the Elektor editorial team at
editor@elektor.com.

About the Author
Altuğ Bakan has been working as an electronics
engineer, mostly with embedded systems. He loves
to use Arduino in his work for rapid prototyping and
ease-of-use. His favorite electronics subjects are
bare-metal embedded programming and Internet of
Things (IoT).

Listing 4: Example for using the API
(next and previous song).
// Skip a song towards a given direction
 void skipSong(String direction) {
 apiClient.beginRequest();
 apiClient.post("/v1/me/player/" + direction);
 apiClient.sendHeader("Content-Length", 0);
 apiClient.sendHeader("Authorization", "Bearer " + accessToken);
 apiClient.endRequest();
 }

Figure 11: The functions of the
buttons are shown on the display.

20 www.elektormagazine.com Partner Contentlektor

and maintained. The Portenta X8 includes the customizable open-source
Linux microPlatform OS, built using best industry practices for end-to-
end security, incremental OTA updates and fleet management.

Portenta X8 Container and Security.

The virtualization layer allows users to deploy device-independent
software running within a controlled environment. They can create
their own containers using Docker and download premade images
from Docker Hub or other public registries available to build a tailored
application. If the developer wants to enter the embedded world, they
can do so easily by building their application, running it on a container,
putting it on the board and testing it out of the box. This provides a
wide range of opportunities by mixing the Linux capabilities and the
Arduino standard experience.

Portenta X8 achieved PSA Certification and the NXP EdgeLock SE050
hardware secure element provides key generation, accelerated crypto
operations and secure storage. X8 also achieved Arm® SystemReady
[2] certification and integrated Parsec services, making it one of the
first Cassini Products or Cloud Native Edge devices available to devel-
opers in the market. It seamlessly runs Fedora IoT, Fedora Server,
Debian and Linux microPlatform. Enabling the migration of cloud-na-

Build, Deploy, and
Maintain Scalable,
Secure Applications
With Arduino Portenta X8 Featuring NXP’s i.MX 8M Mini Applications
Processor and EdgeLock® SE050 Secure Element

CASE STUDIES

Contributed by NXP Semiconductors

Bringing an IoT device to the market involves
signi!cant design and development e"ort –
with scalability issues, security challenges,
and device limitations around every corner.
Adding intelligence makes it even more
complicated. This makes the selection of the
right development hardware and software
critical to getting secure edge products to
market faster. This article introduces the
Arduino Portenta X8 platform, an industrial-
grade, secure SOM based on NXP’s i.MX 8M
Mini applications processor and an onboard
EdgeLock® SE050 hardware secure element.
This PSA-certi!ed platform is also Arm®
SystemReady IR for assured security.

Arduino Portenta X8 is a powerful, industrial-grade system on a module
with Linux® OS preloaded onboard, capable of running device-inde-
pendent software because of its modular container architecture. It
o"ers two approaches: flexibility of usage of Linux combined with
real-time applications through the Arduino environment. Onboard
Wi-Fi/Bluetooth® Low Energy connectivity allows remote OS/appli-
cation updates, always keeping the Linux kernel environment at top
performance levels.

State-of-the-Art Security
The container-based system integrates di"erent layers of security start-
ing from the hardware layer which includes NXP’s Secure Element.
It utilizes the cloud-based DevOps platform from Foundries.io [1] to
reinvent the way embedded Linux solutions are built, tested, deployed

Partner Content Guest edited by 21

identity and managing device identities once released to the field.
The provisioning of the device refers to the installation of keys and
certificates. Managing device identities refers to the update, addition
or revocation of keys and certificates throughout the device lifecycle.

To help designers solve these challenges, NXP provides the EdgeLock
2GO [4] managed service. The platform is a purpose-built hardware
and service combination that establishes a silicon-based root of trust.
EdgeLock 2GO issues the identities required for IoT devices and installs
the credentials securely into the EdgeLock SE050 hardware. It also
automatically registers the IoT device directly to the cloud service.

NXP Manages Device Credentials.

This flexible service supports multiple types of credentials and applies
di"erent configurations depending on the project. Credentials can be
renewed or added to devices released in the field. With the commis-
sioning of EdgeLock SE050 and EdgeLock 2GO, users get an end-to-
end solution that is simple, secure and flexible.

As IoT continues to expand, so do the risks. NXP’s EdgeLock combi-
nation, with its hardware-based security and service for credential
management, gives device manufacturers a safer way to do business.
With NXP EdgeLock supporting the deployment of a device, it reduces
time-to-market and lowers the day-to-day costs of operating an IoT
deployment while having the confidence of knowing devices are
protected by high-level security.

Unleash the Power: Providing More Speed and
Improved E!iciency
The i.MX 8M Mini [5] SoC is NXP’s first embedded multicore applica-
tions processor built using advanced 14LPC FinFET process technol-
ogy, providing more speed and improved power e"iciency. The i.MX
8M Mini family of applications processors brings together high-perfor-
mance computing, power e"iciency, and embedded security needed
to drive the fast-growing edge node computing, streaming multimedia,
and machine learning applications.

tive workloads from the Cloud to the edge, the Portenta X8 contrib-
utes to a cloud-native developer experience across Arm’s diverse and
secure IoT ecosystem.

Platform Security Architecture.

EdgeLock SE050 – A Trust Anchor for IoT
NXP’s EdgeLock SE050 [3] is a discrete and tamper-resistant security
hardware for protecting the identity of a device, including cryptographic
keys and certificates. It’s a standalone embedded secure element that
is attached to the main processor over the I2C interface. The EdgeLock
SE050 is certified Common Criteria EAL 6+ for the hardware and
operating system. This ready-to-use secure element for IoT devices
provides a root of trust at the IC level and delivers real end-to-end
security – from edge to cloud – without the need to implement security
code nor handle critical keys and credentials.

Silicon-based Root of Trust: EdgeLock® SE050 Secure Element.

Delivered as a ready-to-use solution, EdgeLock SE050 comes with
multiple pre-implemented cryptographic algorithms and protocols
and a complete product support package that simplifies design-in
and reduces time to market. In addition to libraries for di"erent MCUs
and MPUs, the support package also o"ers integration with the many
common OSs including Linux, RTOS and Android.

IoT device designers are facing two major challenges when imple-
menting device onboarding to the cloud: provisioning of the device

22 www.elektormagazine.com Partner Contentlektor

 > Building Automation
 – Interacting with environmentally smart sensors, Portenta X8
allows the implementation of real-time ML and image process-
ing on the edge.

 – Smart kiosks usually leverage several components (e.g. card
readers, cameras, microphones), requiring a diverse selection
of I/Os. When combined with a Max Carrier, the Portenta X8
ensures Wi-Fi connectivity and allows administrators to remotely
monitor machine usage.

 – The Portenta X8 can simultaneously control HVAC systems,
switch on/o" smart appliances, autonomously adjust lighting
and control accesses on the edge.

Start developing today with the industrial-grade, secure Portenta
X8 SOM [6] with outstanding computational density.

220576-01

The i.MX 8M Mini SoC is o"ered in single, dual and quadcore variants
using Arm® Cortex®-A53 operating at up to 1.8 gigahertz per core. Deliv-
ered in advanced low-power process, the core complex is optimized
for fanless operation, low thermal system cost and long battery life.
The Cortex-A cores can be powered o" while the Cortex-M4 subsys-
tem performs low-power, real-time system monitoring. The DRAM
controller supports 32-bit/16-bit LPDDR4, DDR4, and DDR3L memory,
providing great system design flexibility.

i.MX 8M Mini core options are optimized for
ultra-low-power, even sub-Watt in specific
applications, but o"er the breadth of process-
ing power necessary for consumer, audio,
industrial, machine learning training and infer-
encing across a range of cloud providers. The
i.MX 8M Mini SoC also packs-in hardware
1080p video acceleration to enable two-way
video applications, 2D and 3D graphics to
provide a rich visual HMI experience, and
advanced audio capabilities to enable audio-
rich applications. An extensive selection of
high-speed interfaces enables broader system
connectivity and targets industrial-level
qualification.

Application Examples Include:

 > Industrial Automation

 – The Portenta X8 can then act as a
multi-protocol gateway, sending data
to the Cloud or ERP system via Wi-Fi,
LoRa, NB/IoT, LTE Cat.M1.

 – The availability of Linux containers like
ROS within the Arduino environment
makes the Portenta X8 a great fit for
autonomous guided vehicles.

[1] Foundries.io: https://foundries.io/
[2] Arm SystemReady: https://www.arm.com/architecture/system-architectures/systemready-certification-program
[3] EdgeLock SE050: https://bit.ly/EdgeLockSE050
[4] EdgeLock 2GO: https://bit.ly/EdgeLock2GO
[5] i.MX 8M Mini: https://bit.ly/iMX8MMini
[6] Portenta X8 SOM: https://www.arduino.cc/pro/hardware/product/portenta-x8

WEB LINKS

i.MX 8M Mini Applications Processor Block Diagram

New Arduino or
Electronics Project?
Share it with our community!

Follow us on:

www.elektor.com/FB

www.elektor.com/TW

www.elektor.com/Intsta

X

New Arduino or
Electronics Project?
Share it with our community!

Follow us on:

www.elektor.com/FB

www.elektor.com/TW

www.elektor.com/Intsta

X

24 www.elektormagazine.comlektor

By Keith Jackson (Arduino)

How has one of the world’s most
popular electronics manufacturers
successfully navigated the supply
chain challenges of the past three
years? With an unwavering passion
for innovation, close collaboration
with local partners, and a human
touch.

Meet Daria Baradel, the Person Responsible
for Production at Arduino

Bringing the
Human Element
to Manufacturing

Daria Baradel (front)
and her Arduino
colleagues.

Keith Jackson: Hi, Daria. With everything we see
in the news about the global shortages of electro-
nic components ceasing production in factories
around the world, it must have been a challenging
year leading manufacturing for Arduino?

Daria Baradel: Yes. Whilst everyone has heard about
shortages in the electronics industry a"ecting every-
thing from new cars to games consoles, it’s not just
about the lack of stock that is causing the biggest

With Daria Baradel

Guest edited by 25

they have been involved much earlier in the design
process. So we are all living and breathing every new
product from the initial concept.

In 2022, the supply chain team together with hardware
team have managed the validation of more than 100
alternative components and reworked the design of 16
products to adjust the BOM and being able to proceed
in manufacturing.

Keith: What’s it been like with the suppliers, given
that Arduino is just one of many customers crying
out for components?

Daria: Ironically, over the past few years, I had invested
a lot of time automating as many purchasing proce-
dures as possible for ordering components. This year,
though, human interaction has come back to the fore.
It’s essential to communicate and work with other
humans. Only through constant phone calls are we
able to keep pace with the latest changes and the
knock-on consequences. I’d probably be considered
a stalker with the constant daily messages I’ve been
sending them!

Many of Arduino’s suppliers take a keen interest in the
whole Arduino concept, with quite a few of them being
Arduino enthusiasts. Therefore, it is clearly apparent
that we got great support from some suppliers and
poor from others; but on the whole, those we got great
support from are now really tight Arduino suppliers,
working closely with us as part of one big community.

Keith: How is manufacturing going and what’s
your outlook for the future?

Daria: Despite everything that’s happened this year,
manufacturing volumes are still over 20% up versus
the same stage in 2021. This has been achieved by a
complete cross team e"ort. The Hardware team have
contributed immensely by checking and approving
literally hundreds of alternative components, in many
cases mounting and testing them for approval the
same day to ensure we could source the available
stock. So, although there is no light at the end of the
tunnel in terms of components shortages with many
lead times extending into the backend of 2023, I’m still
positive that we can keep growing as, after all, compa-
nies are made by humans. The changes to mindset and
procedures we’ve had to put in place this year will only
make us stronger and more e"ective in the future.

 di#culties, it is the unpredictable delays and constant
cost increases that make keeping control virtually
impossible.

The whole team has had to adapt our approach and
become more flexible. Keeping control requires
predictability and risk management, but when predict-
ability is no longer there, maintaining production
is a daily challenge. On any given day, an expected
delivery may be canceled, causing production stops
at the factory. It’s not always cancellations that cause
last-minute changes in the production scheduling
though. There are the exact opposites where there
is suddenly the chance to take a random delivery of
components that wasn’t expected until 2023. In cases
where this was the one outstanding line in a BOM,
it suddenly gives us the opportunity to get a model
into production again, so we are constantly adapting
plans to what is available and what our customers are
demanding. We had to review all standard procedures
and adapt them in this unstable and unpredictable
situation, making them less standard and more $exi-
ble in order to be ready to manage every single issue
that would have arisen.

Keith: Can you share some insights as to how you
and the team have adapted your approach to deal
with these challenges?

Daria: At the beginning, I was trying to predict what
was going to happen, but this proved to be impos-
sible. Thus, I had to change my mindset and adopt
more proactive procedures. As a team we agreed it
was necessary to gain greater control on the deliveries;
therefore, every Friday, we check with all of our suppli-
ers what is due for delivery next week. For the main
components, we then follow this up on a daily basis.

It isn’t just a case though of how we work with our
suppliers; it also became absolutely necessary to work
much closer with the Arduino Hardware team respon-
sible for designing and testing the products. Before
%nalizing a BOM for a new product or even con%rming
which components to mount on a board during proto-
typing, both teams now meet to assess availability and
reliability of the vendor, as part of the design process.

Availability of a component, as well as its capability,
is now a consideration in the %nal design. It’s not all
negative though, as the team now have a far greater
understanding of the boards and the components as

26 www.elektormagazine.comlektor

Daria: Yes. Manufacturing locally was a deliber-
ate choice, as Arduino has always taken a positive
approach to sustainability, environmental impact,
and the local community. Our sustainability goals are
more than a piece of paper: we have always tried to
keep as low a carbon footprint as possible and limit
waste. For example, we give away old stock to local
schools, and the manufacturing and packaging of the
products is carried out within a 50-km radius of our
Turin o#ce. The community spirit is applied when
selecting our partners, as well as manufacturing the
products locally. The kitting and packing is carried out
by a local company that actively employs people with
impairments and provides them with an opportunity
to be independent.

Keith: It sounds like you’re very proud to work at
Arduino. But other than dealing with daily compo-
nent shortages, what else inspires Daria?

Daria: I’m an engineer by training, with two master’s
degrees in production engineering and engineering
management. Back in 2014 when I joined the company
as a project manager, we were manufacturing between
3,000 to 5,000 boards per month. This has grown to
over 50 times that level — meaning, I now have a full
team of eight people to manage this.

Apart from work, though, I love to travel and actively
participate in lots of sports, especially climbing,
running, wind sur%ng, and beach volleyball. I %nd
sporting activities are the best release for all the
stresses of the day. But if I had a dream for the future,
it would be to one day own a farm, as I love animals,
coming from a family that kept cows, sheep, and goats.
I’m sure even then I will have Arduinos all around the
place to make it as e#cient as possible.

220426-01

About the Author
Keith Jackson works in marketing for Arduino, and is
passionate about all things Arduino as it‘s more than
a company or a brand, it‘s a whole diverse community.

Questions or Comments?
Do you have any questions or comments relating
to this article? Feel free to contact the author
at k.jackson@arduino.cc or contact the team at
Elektor at editor@elektor.com.

Keith: You mentioned testing and approving alter-
native components on the same day. How is this
doable?

Daria: Having our manufacturers close to the Arduino
R&D offices has been a huge benefit through the
COVID pandemic and into these times of shortages.
Arduino has always prided itself on manufacturing
in Italy, with all the boards manufactured across two
plants in the Piedmont region of Italy. In practice,
this has meant when any problems have occurred the
engineers have jumped in a car and immediately gone
to the factory nearby to Turin to check and change
components if necessary. When we are informed of
an alternative component’s availability, it is neces-
sary to con%rm the order the same day; otherwise,
the stock gets taken by someone else. You have to be
very quick o" the mark. So, the engineers will go to
the factory, test the alternative product, and give us
the greenlight, enabling the order to be placed that
same day. This clearly would not have been possible
if our manufacturing was carried out o"shore.

Keith: Arduino must be one of the few electro-
nics companies still using local manufacturers
to produce its boards?

Webinars
Elektor FEB

2023
16:00 CET

MicroPython Enters
the World of Arduino
with Stuart Cording & Sebastian Romero

Join for free
www.elektor.com/webinar-MicroPython

MicroPython has made it to the world of Arduino, providing the
first significant alternative to programming in C and C++. So,
what’s all the fuss, how easy is it to use, and who can benefit from
programming in this, for microcontrollers, relatively new language?
Stuart Cording will speak with Sebastian Romero (Head of Content,
Arduino) during our live webinar to find out more.

X

#!/usr/bin/
env python3

import re

import subp
rocess

import sys

verbosity =
 0 # Show

what’s goin
g on, 0 1 o

r 2.

suggestions
 = 1 # Set

 to 0 to no
t include l

engthy

suggestions
 in error m

essages.

ignore_prefi
xes = []

def verbose
(*args):

 if verb
osity:

 pri
nt(*args)

ignore_prefixes = []

!e# 3er�oseǯǹ�rgsǰǓ i# 3er�osi16Ǔ prin1ǯǹ�rgsǰ

Webinars
Elektor FEB

2023
16:00 CET

MicroPython Enters
the World of Arduino
with Stuart Cording & Sebastian Romero

Join for free
www.elektor.com/webinar-MicroPython

MicroPython has made it to the world of Arduino, providing the
first significant alternative to programming in C and C++. So,
what’s all the fuss, how easy is it to use, and who can benefit from
programming in this, for microcontrollers, relatively new language?
Stuart Cording will speak with Sebastian Romero (Head of Content,
Arduino) during our live webinar to find out more.

X

28 www.elektormagazine.comlektor Partner Content

What Is a Development Board?
At the outset, a clear definition of what is meant by a
development board and how they di!er from a single-
board computer (SBC) is required. A development board
is typically created by the manufacturer of a microcon-
troller to highlight its features (although the term is now
also often applied to other types of components, as well).
A microcontroller is an integrated circuit that contains a
processor, some RAM, flash storage and has I/O function-
ality that allows it to interface with the real world. It e!ec-
tively functions like a miniature computer housed in a
single package, its purpose being to provide developers
with a convenient way to interface with it and control
external components like lights, small motors, etc. An SBC

also provides this functionality with the main di!erence
being that the CPU, RAM, and storage are each contained
within separate ICs on the board, and interfaces allow it
to be connected to a keyboard and/or display.

The microprocessor on an SBC requires an operating
system, whereas a microcontroller is managed using an
integrated development environment (IDE) provided by
the manufacturer. In many cases, manufacturers now
create development boards that include a microcontrol-
ler but whose main purpose is not to demonstrate the
features of the microcontroller itself but those of sensors
or other integrated circuits to which it interfaces. These
are referred to as ‘demo boards,’ ‘evaluation kits,’ or — if
they have been assembled to enable the collection of
parts to perform a tangible purpose — ‘reference designs.’

The purpose of some boards is not primarily for hardware
development, but to provide access to the real-world
data that software developers require to create and refine
algorithms needed for artificial intelligence and machine
learning applications. While these may not conform to
the original definition and purpose of a ‘development
board,’ these are now collectively understood to refer to
any piece of hardware that can be used in the software
and hardware development of new electronic products.

Past
The first microcontroller development board to capture
the attention of the engineering community was released
in 2006. This prototyping platform, which later became
known as Arduino [1] (Figure 1) was quickly adopted by a
new category of electronic designers that included enthu-

Development Boards
Past, Present, and Posterity

BACKGROUND

(Source: Shutterstock)

By Mark Patrick (Mouser Electronics)

In recent years, the meaning of the term
‘development board’ has become lost in
the myriad of terms being used to describe
hardware boards used for development
purposes, including demonstration (demo)
boards, evaluation kits and reference designs.
In this article, we explain the meanings of
these various terms and show how they di"er
from their close relations — the single board
computers (SBC). We chart their evolution from
past to present and investigate some trends for
how they may evolve in the future.

Guest edited by 29Partner Content

Development Boards
Past, Present, and Posterity

siasts, hobbyists, and DIY engineers. Arduino laid the
foundations for the commercial success of later SBCs and
microcontroller-based platforms and was soon followed in
2008 by BeagleBoard [2], which provided engineers with
a low-cost, open-source community-supported devel-
opment platform. 2012 saw the release of the Raspberry
Pi [3] — the first modern single-board computer. Like
BeagleBoard, it was conceived as an educational platform
intended to provide a low-cost way in which students
could use to learn how to write program code. The appeal
of Raspberry Pi was much wider than students alone,
and it was quickly adopted by amateur hobbyists and
professional engineers alike.

Present
Today, there are two main categories of SBCs — propri-
etary and open-source. Proprietary SBCs are typically
designed for use in end applications and have been
subjected to the same type of testing and quality assur-
ance as other end products. They are either integrated
into electronic equipment or installed in a rack-mount
configuration. Open-source SBCs provide users with
access to their hardware design and layout and to any
source code that they use. This allows users to quickly
and easily learn how the software and hardware operates
and then adopt the design to match their requirements.

Today, development boards and SBCs come with a wide
variety of processor types. These range from x86-based
processors within the traditional PC space (AMD and
Intel) to ARM processors used in industrial and mobile
applications. Linux and its derivatives (Ubuntu, Fedora,
Debian, etc.), Android, and Windows CE are the operating
systems most used on SBCs. Microcontroller develop-
ment boards do not require an operating system and are
programmed via an IDE provided by the manufacturer.
Microcontroller development boards and SBCs have
both evolved to include wireless connectivity (Wi-Fi,
Bluetooth), and the most recent audio and video inter-
faces, meaning that some SBCs now have features equiv-
alent to those found in many PCs and tablets.

Posterity: Development Boards Become
the Final Product
Traditionally, manufacturers created development tools
with the intention of using them as a marketing aid
that could improve the likelihood of selling their micro-
controllers to prospective customers (often referred
to as ‘Design-in’ within the industry). They hoped that
by minimizing the amount of work required by design
engineers to get a part up and running in the lab and
by making it easy for them to access and investigate
its features, it would make them more likely to choose
their microcontroller and ancillary parts for use in initial

product prototyping and would eventually lead to higher
volume orders if the part was chosen for use in a mass
production. For products where the di!erence in the
technical specifications between parts from differ-
ent suppliers is negligible, this is a prudent approach.
However, for manufacturers, this approach has been, in
some respects, a victim of its own success. They realized
that they must continue to reduce the amount of work
required for an engineer to engage with their products,
so the development board has become the key di!eren-
tiator — especially for products that are broadly similar
to those of their competitors.

The expectations of design engineers has risen such that,
even for parts that have a clearly identifiable compet-
itive advantage (for example, in power or speed) they
still expect the associated development boards to have
plug-and-play levels of accessibility.

Manufacturers have further improved their value propo-
sition by o!ering reference designs consisting of a micro-
controller and other integrated circuits (typically sensors).
Initially, these were intended to provide a guide for how
devices could be interconnected to emulate the electri-
cal functionality of a final product, with little focus on
their form factor, size of the design, or ease of manufac-
ture. However, some manufacturers have taken refer-
ence designs to the next level by creating fully-fledged
product prototypes and even completely viable products.

The health sensor platform (HSP) reference designs [4]
by Maxim Integrated (now part of Analog Devices) can be
used as an example in charting this evolution. The initial
version of these reference designs was a small devel-
opment board that features an assortment of sensors

Figure 1: Arduino
microcontroller
development board.
(Source: Shutterstock)

30 www.elektormagazine.comlektor Partner Content

By demonstrating how their hardware facilitates easy
access to data, Maxim hoped that product develop-
ers would choose some (or all) of the ICs in Maxim’s
sensor solution for use in products. Maxim extended this
approach as far as to develop the MAX HEALTH BAND
[5] (wrist) and MAX ECG MONITOR [6] (chest strap),
both fully designed and constructed to be fully viable
wearable health and fitness devices. While they were
not intended for sale directly to consumers, businesses
could enter into an agreement with Maxim to have these
products branded under their own label in return for a
royalty payment.

O!ering a fully functioning product in this way, where
all the development work had already been done, has
the potential to appeal to a new and broader non-tech-
nical business customer base. Nordic Semiconduc-
tor’s Thingy:91 [7] is another example of a development
platform where hardware has become almost incidental
to the task of providing developers with access to the data
they need to develop the software and algorithms that
allow the intrinsic value of the hardware to be realized
(but, in so doing, conveniently make them the obvious
choice for use in new product designs that leverage these
algorithms). It is likely that this approach will be adopted
by even more manufacturers in the future.

Increased Use of Development Boards
in Industrial Products
Adapting development boards and SBCs for use in
commercial products has become increasingly common,
but another emerging trend is the use of boards in
lower-volume but higher-value applications, such as
in industrial end-products such as programmable logic
controllers (Figure 3), which are subject to more exacting
standards than their commercial equivalents.

Testing Boards for Industrial Applications
Many of today’s SBCs have inherently become fully
verified designs because the parts they contain were
originally developed for use in end-products and have
therefore been tested and quality-assured. This is also
because open-source designs are constantly reviewed
by an army of competent designers and programmers
who update and appraise the boards and the software
that they use.

Testing of SBC boards is now performed through
high-quality design and manufacturing firms, and they
are subjected to the same rigorous degree of quality
control as any other end products, thus allowing them
even to achieve CE or FCC certifications. This test flow
can easily be extended to meet the requirements of indus-
trial products.

(temperature, pressure, accelerometer, biopotential, etc.)
suitable for use in health and fitness applications and
which could be configured using a microcontroller. Its
successors, HSP2.0 and HSP3.0, had form factors that
allowed them to be wrist-worn, and they look much like
other wearables available on the market (Figure 2).

This allowed developers to evaluate the functionality
of their sensors in real-world scenarios. Importantly,
these designs also provided software developers with
free access to sensor readings (information not easily
accessible from other health and fitness wearables). The
purpose of this approach was to enable the development
of machine learning and artificial intelligence algorithms
that would add value to the application.

Figure 2: HSP3.0 by
Maxim Integrated.

Figure 3: Programmable
Logic Controller. (Source:
Shutterstock)

Guest edited by 31Partner Content

humidity, the boards must be evaluated under compa-
rable conditions. Where a board is intended for use in a
high vibration application, then it should be mounted in
a test frame and vibration tested.

Conclusion
SBCs and microcontroller development boards provide
small companies with a convenient way to bring their
designs to market quickly without the expense of new
hardware development. The boards allow them to focus
on software innovation and increasingly on the devel-
opment of machine learning and artificial intelligence
algorithms. SBCs and development boards have broad-
ened their remit well beyond that which was originally
envisioned for them, and they have made a real impact
on the recent history of the electronics industry. They
continue to become more powerful, intelligent, and
responsive, while remaining easily accessible to both
professional engineers and electronics enthusiasts.

220597-01

On the other hand, microcontroller development boards
supplied by manufacturers or third parties, while usually
suitable for use in commerical products, are not typically
subjected to the same stringent levels of testing required
for industrial products. This means that manufacturers
do not currently recommend them for immediate use (in
their current guise) in these applications.

While some boards include industrial grade components,
they are more often only of commercial grade, with the
boards being designed to operate at room temperature.
Prototypes of development boards typically undergo
testing at room temperature for several days or weeks,
but this varies depending on the manufacturer, as there
are no set standards. The primary quality requirement
for manufacturers is that their boards operate reliably
at room temperature, and therefore purchasers should
be aware that it is unlikely that these boards have been
tested at extremes of temperature or humidity. They also
aren’t normally tested to survive the stresses associated
with intense vibration or shock.

As a result, the main objective when determining which
development board to use in an industrial application is
to reduce risk: The board components must be of the
proper temperature grade. It also makes sense to stress
test several boards simultaneously at high temperature
for a period of days. Similarly, if planning to use a devel-
opment board in a product that will experience high

[1] Arduino Boards Distributor: https://elektor.link/MouserArduino
[2] BeagleBoard Distributor: https://elektor.link/MouserBeagleBoard
[3] Raspberry Pi Distributor: https://elektor.link/MouserRaspberryPi
[4] Maxim Integrated Distributor: https://elektor.link/MouserMaxim
[5] MAX HEALTH BAND: https://elektor.link/MouserMaxHealthBand
[6] MAX-ECG-MONITOR : https://elektor.link/MouserMaxECGMonitor
[7] Nordic Semiconductor Thingy:91™ Multisensor Prototyping Kit : https://elektor.link/MouserThingy91

WEB LINKS

About the Author
As Mouser Electronics’ Technical Marketing Manager for EMEA,
Mark Patrick is responsible for the creation and circulation of techni-
cal content within the region — content that is key to Mouser’s
strategy to support, inform and inspire its engineering audience.

Prior to leading the Technical Marketing team, Patrick was part
of the EMEA Supplier Marketing team and played a vital role in
establishing and developing relationships with key manufacturing

partners. In addition to a variety of technical and marketing positions,
Patrick’s previous roles include eight years at Texas Instruments in
Applications Support and Technical Sales.

A “hands-on” engineer at heart, with a passion for vintage synthe-
sizers and motorcycles, he thinks nothing of carrying out repairs
on either. Patrick holds a first-class Honours Degree in Electronics
Engineering from Coventry University.

32 www.elektormagazine.comlektor

This year, a few of us at the design company IDEO were
invited to do a workshop at Eyeo Festival [1]. We wanted
to build something physical with people, but something
that could be controlled with code and experimented with.
My colleague and collaborator, Jenna Fizel, has done a lot
of inspiring stu! writing software that supports making
3D objects from paper and other thin materials. Recently,

I’ve been experimenting with Nitinol wire, a material that
can change shape when you pass current through it. With
the additional support of IDEO software designers Derek
Olson and YC Sun, we set out to see how we could make
a kit of parts that allows others to make moving paper
sculptures (Figure 1).

In the workshop, we wanted people to leave with
something that was uniquely their own, but we also
wanted the workshop’s final product to be collaborative.
This was the first in-person workshop we did coming out
of the pandemic, and we wanted there to be some sort of
unique value for all of us to build something together, in
person. Could the sculptures we make perform with one
another? How would they communicate? We figured if
they could communicate sonically, we could hear them
perform together. The workshop could create a gener-
ative symphony!

PROJECT

By Dave Vondle (IDEO)

Since their strange properties were discovered
over 60 years ago, Nitinol wires have been a

solution looking for an application.
Here, the inspired application is art — !owers

that respond to sound with light, sound,
and movement.

from Muscle Wires
Kinetic Sculptures That Communicate With Sound

Flower Art

Figure 1: The results
of a ‘Creating Kinetic
Flora’ workshop.

Guest edited by 33

The participants in the workshop had a wide variety
of backgrounds and electronics knowledge. By build-
ing these flowers, we were able to familiarize folks with
concepts across a large spectrum. Some of the funda-
mentals were ‘Getting Started with Arduino’ and Ohm’s
law for understanding the voltage required to drive the
Nitinol. Some of the more complex concepts we could
cover were what pulse-width modulation is, fast Fourier
transforms (FFT) for identifying the frequencies of neigh-
boring flowers, and the basics of audio synthesis.

Each participant built a hand-painted flower, where
they designed the shape of the petals (Figure 2).
The electronics in the flowers control the LED lights on
the top, the sounds the flower makes, as well as indepen-
dent control of the petal position.

You can see a video of what the final performance at a
subsequent IDEO workshop looked like at [2].

As we get into the details below, I’ll walk through the
design of the hardware, then I’ll talk about the software.
Lastly, I’ll get into how you can make your own.

The Hardware
The hardware is loosely based on a combination of the
Adafruit Trinket M0 [3] and the Sparkfun Electret Micro-
phone Breakout Board [4]. In addition to the function-
ality of these boards, we added another amplifier for a
speaker, a 5 V buck-boost circuit so it could run from a
battery source, some WS2812 addressable LEDs, and
8 MOSFETs to control the current in the Nitinol wire.

220588-003

+5V V+

+3V3V+

V+

+3V3

+3V3

B4013AM423-008

S+

S–

+5V

LM4890MX/NOPB

+5V

V+V+

SWC

SWD

+3V3

GND

+3V3+3V3

VDD CORE

VDD ANA

/RESET

VDD INPA08
PA09
PA10
PA11
PA14
PA15

PA
16

PA
07

PA
17

PA
06

PA
18

PA
05

PA
19

PA
04

PA
22

PA
03

PA
23

PA
02

PA
24

PA
01

PA
25

PA
00

PA31
PA30

PA28

PA27

GND

GND

10
11
12
13
14
15
16

17 18 19 20 21 22 23 24

32
31
30
29
28
27
26
25

9

8 7 6 5 4 3 2 1

ATSAMD21E17D-MUT

U1

S1
C5

1µ

VBUS

SBU2
VBUS

VBUS
SBU1

VBUS

B12

GND

CC2
DP2
DN2

GND

GND

DN1
DP1
CC1

GND

A12B1

B4
B5
B6
B7
B8
B9

A9
A8
A7
A6
A5
A4

A1

0

0

0

0

0

0

0

0

USB-C

R8

1M

C8

4n7

R9

5k
1

R10

5k
1

R6

1k
5

LED1

RED

DOUT

VDD
DIN

VSS

1

2

4

3

WS2812B

DOUT

VDD
DIN

VSS

1

2

4

3

WS2812B

DOUT

VDD
DIN

VSS

1

2

4

3

WS2812B

DOUT

VDD
DIN

VSS

1

2

4

3

WS2812B

BYPASS

/SD

+IN

–IN

VDD

VO1

VO2

GND

1

3

4

2

6

5

8

7

U3

C9
1µ

C11

100µ

C12

100µ

C10
1µ

R11

20
k

C4

470n

1IC2A
3

2

7 IC2B
5

6

R4
820k

R1

2k
2

R2
10k

R3

10
k

R5

10
k

C1

4µ7

C2

4µ7

C3

100n
IC2

8

4

MIC1

U8

G

D

S

JP5

V+

U9

G

D

S

JP6

V+

U10

G

D

S

JP7

V+

U11

G

D

S

JP8

V+

U7

G

D

S

JP4

V+

U6

G

D

S

JP3

V+

U5

G

D

S

JP2

V+

U4

G

D

S

JP1

U3

XC6206P332MR-G

C6

1µ

C7

1µ

R7

1k
5

LED2

GREEN

VOUT

VA
UX

PG
ND

PS
/S

VSEL

FB2

G
ND

L2

VIN

FB

10

PG
L1

11

EN

12

13

14

15

8

7

6

5

4

9

3 2 1

TPS63070RNMR

U12

R15

10
0k

R12
100k

C20

100n

HPC6045NF

CONN5

CONN6

CONN7

CONN8

CONN4

CONN3

CONN2

CONN1

Figure 3: Schematic for
the Eyeo Flower.

Figure 2: Threading the
Nitinol wire through the
flowers.

34 www.elektormagazine.comlektor

sounds from the speaker, listening to the notes using the
microphone, and reacting with movement in the petals
and light from the LEDs. I’ll do a little breakdown of how
this all works.

Playing Sounds
The ATSAMD21 has a pin that can be configured as a
DAC (digital-to-analog converter). This feature is great
for being able to get a wide variety of musical timbres
coming out of the chip. It allows the flower to be much
more expressive than if we were using the Arduino Tone
library [8], whose tone() function allows you to vary the
pitch of a square wave, but the DAC we use allows us to
control the shape of the waveform itself. We are using the
fantastic Mozzi [9] library, which provides a framework
for defining and playing sounds from this DAC.

In the code, we set up a couple of cosine oscillators —
one for the main carrier frequency and one for vibrato.
We also set up an envelope (otherwise known as an
ADSR — Attack, Decay, Sustain, Release), which gives
us control of the amplitude of the sound over time.

As we play the audio waveform, the microcontroller goes
through a lookup and calculation for what the next voltage
level is that needs to be sent out of the DAC. This happens
at a frequency of 16.384 kHz, so, if we have blocking
code or lots of processing that happens in that time
period, we can throw o! the creation of a smooth wave.
Because of this, the code first listens, reacts with light
and movement, then plays the sound on its own when
other processes aren’t happening.

Listening to Sound
As discussed in the intro, the flower listens for a specific
tone, then reacts with its own tone. The microphone signal
is fed to a pin on the microcontroller (one that can be
configured as an “analog in”) via an amplifier.

In order for the flower to understand the tone or frequency
of the sounds it hears, we use the aforementioned fast
Fourier transform principle. This is a mathematical trans-
form that takes a set of samples in the time domain
(time vs. amplitude) and changes it to a set of samples
in the frequency domain (frequency vs. amplitude). This

The full schematic is shown in Figure 3. The finished
board looks as shown in Figure 4a and 4b.

For our workshop, we wanted to avoid soldering, as
Nitinol can be extremely challenging to solder to without
specialized materials and techniques, so we use a system
of threaded inserts and screws to mechanically connect
the wire. This also allows for fine control of the petals’
wire pre-tension.

The socketed resistors are selected based on the length
of the Nitinol wire to limit the maximum current. We are
using 100 μm Nitinol wire [5] with 126 Ω/m resistance and
rated current maximum of 200 mA. From this, a resistor
can be selected to prevent damage being done to the
wire. In prior tests, we left the resistors out, opting to limit
current by setting a maximum PWM ratio in software. But
we found that, in the programming process, sometimes
a pin would go high, so we resolved this with the physi-
cal resistors.

A speaker is prepared with test-point pins soldered onto
the back, allowing it to be plugged into the top of the
board. On the bottom of the board, there is a central
vertical USB connector, so the USB cable can be used
as the “stem” of the flower.

The Microcontroller
We chose the ATSAMD21 microcontroller family due
to its ability to be Arduino-compatible in a single chip
(most other Arduino boards utilize another component
for the serial UART-to-USB capability). However, the
ATSAMD21E18 variant that is used in the Adafruit Trinket
M0 was not available due to the chip shortage. We were
able to find ATSAMD21E17D chips, which were available.
The primary di!erence between these chips is a reduc-
tion in the available flash memory from 256 KB to 128 KB.
While this di!erence is small, we still had to modify the
Arduino Bootloader [6] (forked from uf2-samdx1), and
make an associated new board in the Arduino IDE to
speak with this new chip/bootloader.

Example Code
The example Arduino sketch [7] provides a baseline
for the flowers to “sing” together by outputting audible

A B

Figure 4a: Finished
board, stem side.

Figure 4b: Finished

board, petal side.

Guest edited by 35

To figure out the Nitinol protection resistors, we need
to do a little bit of calculation. With our petal shape,
we end up with about 13 cm of wire going from post
to post. Our wire has 126 Ω/m resistance and a rated
current maximum of 200 mA. So, our wire resistance is
126 Ω/m × 0.13 m = 16.38 Ω. To calculate the resistance
that we want at 5 V maximum voltage, we use Ohm’s law
to get V / I = R, so 5 V / 0.2 A = 25 Ω. We selected a 10 Ω
resistor in series with our 16.38 Ω wire (10 Ω + 16.38 Ω is
more than 25 Ω) to make sure that we never deliver too
much current to the wire.

mathematical process can be quite resource-intensive
and trades frequency granularity for speed/memory. To
get this running as fast as possible, we use Adafruit’s
Zero DMA (Direct Memory Addressing) library [10] to
pull samples from the microphone into an array, and the
Adafruit Zero FFT library [11] to perform the FFT. Once
the data has been processed through the FFT, we can
look at the primary frequency of the sample to see if it
matches the note we are looking for.

Moving the Petals
You can see an example of the paper prototype in
Figure 5, or see an animated GIF of it in action at [12].
The wire is threaded through the petal asymmetrically.
You can see in Figure 6 that there is much more wire on
the top surface of the petal versus the bottom surface.
When the wire contracts, it shrinks the top surface of the
petal, resulting in a shear strain on the surface, which
curls the petal.

Before we go into the code of the petal movement, let’s
take a moment to dive into how Nitinol works.

Nitinol uses electric current to heat the wire up past a
threshold temperature (for our wire, it’s 70 °C) where it
undergoes a phase change and contracts. In order for
the wire to go back to its original length, it has to be
physically stretched again.

The phase change follows this cycle (see Figure 7): When
the wire is in its elongated state, it is in the deformed
martensitic state. The crystal structure of martensite is
called “body-centered cubic.” When heated, the Nitinol
changes to an austenitic crystal structure. This is called
“face-centered cubic,” which is “close-packed,” meaning
that the structure allows for more atoms to be packed
closer together. So, as this crystal structure changes
when the wire heats up, the atoms rearrange into a close-
packed arrangement, and this causes the wire to contract.

As we mentioned, the wire has to be physically stretched
back out. We needed a way to have this happen without
clunky or complicated springs. Instead of using paper for
the petals, we chose a matte finish polypropylene “water-
color paper” called YUPO [13]. By using this material,
we can use the elasticity inherent in the material to act
as a spring to return the flower petals to an open state
after bending.

Each petal can be controlled separately and is connected
through a MOSFET to a pulse-width modulation
(PWM)-capable line. In the code, we close the petals,
and then, because they’re “o!” when we open them,
this frees our processor up to play sound (even while
the petals are still opening).

Figure 5: The first paper
prototype using a straw,
string, and paper to
test the idea before
designing hardware.

Figure 6: Close-up of a
threaded petal.

Figure 7: A model of
Nitinol’s shape-memory
crystal structure cycle.

36 www.elektormagazine.comlektor

assembled boards. We used JLCPCB [17], so these files
are already formatted for JLCPCB’s PCB and assembly
services. You may attempt to assemble them yourself, but
there are a number of fine-pitch ICs as well as 0402-sized
passives that may pose a challenge.

In the GitHub repo, there are also links for where you
can find the YUPO paper, the gooseneck USB cables,
the Nitinol wire, the screws, and the threaded insert
broaching nuts.

To get the Arduino bootloader onto the chip, we used
a SEGGER J-Link programmer and followed the excel-
lent instructions on how to program SAMD bootloaders
from Adafruit [18].

To hook the board to the programmer, we look at the
SAM SWD pinout from Atmel’s ICE User Guide [19] (see
Figure 8).

What matters to us is:

Pin 1: VCC / Vref
Pin 2: SWDIO (SWD)
Pin 3: GND
Pin 4: SWDCLK (SWC)

LED Light
The uf2 bootloader we modified had support for NeoPix-
els, which are Adafruit-branded WS2812 LEDs. This allows
the LEDs to be diagnostic and give us the status of the
bootloader/USB connection. To control the LEDs when
the code is running, we use the Adafruit NeoPixel library
[14]. WS2812 LEDs are designed to be daisy-chained.
When sending data to the LEDs, each LED receives 8 bits
per color (24 bits total). As we send more data, this data
gets shifted to the next LED in line, allowing independent
control of numerous LEDs from a single pin.

How to Make Your Own Flowers
We made an interactive website [15] that allows you
to quickly sketch a flower petal shape to be cut with a
desktop cutting machine such as a Cricut.

You can find the source Eagle files, Gerber, CPL, and BOM
files to make the PCBs on the project’s GitHub page [16].
With these files, you can use a board fab house to get

Figure 8: Recommended
ARM SWD/JTAG header

pinout. Source: Atmel
datasheet [19]

Figure 9: Location of the
SWD pins on our board.

Guest edited by 37

These need to go to the corresponding pins on the PCB
— indicated in Figure 9 as GND, SWC, +3V3, and SWD.

Because we were programming many boards, we built
a programmer using pogo pins, to easily swap boards
out (Figure 10).

We also need to press-fit the “broaching nuts” (threaded
inserts) into our board so that we can screw down the
Nitinol wire to the board. We used an old X-ACTO handle
to make a custom press-fit jig to press the broaching
nuts into the board (Figure 11).

Depending on the tools you have, there are likely better
ways to make programming jigs and broaching nut jigs.
Let us know if you find a better way!

Conclusion
We loved making these and sharing them with the world.
We think it’s a fun platform for experimenting with a
number of di!erent principles in a small package. If you
end up building on this, or want to discuss this with us,
please let us know!

220588-01

Questions or Comments?
If you end up building on this, or want to discuss this
with us, send a message to @ideo on Instagram, or
email me at dvondle@ideo.com, or contact Elektor
editorial at editor@elektor.com.

About the Author
Dave Vondle is a Director of
Experimentation and Publish-
ing at IDEO. He works to
create well-crafted products
and experiences by designing
and facilitating their develop-
ment. Preferring not to stay put

in one role, Dave moves between guiding projects,
coding, designing interfaces, building prototypes,
and designing circuits. Prior to IDEO, he received a
BS from Brown University in Electrical Engineering,
while taking classes at the Rhode Island School of
Design to fill out his creative interests. On the side,
he is working on building a set of Eurorack-format
CRT analog X-Y oscilloscopes. You can find him on
Instagram at @ideo and @vondle_ synths.

[1] Eyeo Festival: https://eyeofestival.com
[2] Nitonol Flowers Demonstration: https://youtu.be/MBdbXO-WHJ4
[3] Adafruit Trinket M0: https://adafruit.com/product/3500
[4] Sparkfun Electret Microphone Breakout:

https://sparkfun.com/products/12758
[5] Muscle Wires Actuator Wire 100 µm: https://elektor.link/musclewires
[6] Modified Arduino bootloader:

https://github.com/ideo/eyeo-flower/tree/main/Bootloader
[7] Eyeo Flower Example Sketch:

https://github.com/ideo/ArduinoCore-samd/tree/master/libraries/
Eyeo_Flower

[8] Arduino Tone library: https://arduino.cc/reference/en/libraries/tone
[9] Mozzi: https://sensorium.github.io/Mozzi
[10] Adafruit Zero DMA library:

https://arduino.cc/reference/en/libraries/adafruit-zero-dma-library
[11] Adafruit Zero FFT library:

https://www.arduino.cc/reference/en/libraries/adafruit-zero-fft-library
[12] Nitinol Flower Paper Prototype (animated GIF):

https://elektor.link/gif/nitinol-flower-paper-prototype.gif
[13] YUPO synthetic paper: https://yupousa.com/what-is-yupo
[14] Adafruit NeoPixel library:

https://arduino.cc/reference/en/libraries/adafruit-neopixel
[15] EYEO Flora interactive site:

https://observablehq.com/@jftesser/eyeo-flower
[16] EYEO Flower GitHub repository: https://github.com/ideo/eyeo-flower
[17] JLCPCB circuit board manufacturer: https://jlcpcb.com
[18] How to Program SAMD Bootloaders:

https://learn.adafruit.com/how-to-program-samd-bootloaders
[19] Atmel-ICE Debugger User Guide:

https://elektor.link/AtmelICEUserGuide

WEB LINKS

Figure 11: Custom tools
for a small arbor press.

Figure 10: Custom
programming jig.

38 www.elektormagazine.comlektor

Portenta H7 allows you to build your next
smart project. Ever wanted an automated
house? Or a smart garden? Well, now it’s
easy with the Arduino IoT Cloud compat-
ible boards. It means: you can connect
devices, visualize data, control and share
your projects from anywhere in the world.

www.elektor.com/19351

Arduino Pro Nicla Vision

Nicla Vision combines a power-
ful STM32H747AII6 Dual ARM
Cortex-M7/-M4 IC processor with
a 2 MP color camera that supports
TinyML, as well as a smart 6-axis
motion sensor, integrated microphone
and distance sensor.

www.elektor.com/20152

PID-based Practical Digital
Control with Raspberry Pi and
Arduino Uno

www.elektor.com/20274

The next evolution of the Tinkerkit
Braccio robot is called Arduino
Braccio ++ , a brand new robotic
arm designed for advanced users.
Arduino Braccio ++ can be assem-
bled in several ways for multiple
tasks, such as moving objects,
mounting a camera and tracking
your movements, or attaching a solar
panel and tracking the movement of
the sun. Arduino Braccio ++ o!ers a
multitude of expansive possibilities
from the very outset, including a new
Braccio Carrier with LCD screen,
new RS-485 servo motors, and a
totally enhanced experience.

www.elektor.com/20174

Arduino Pro Portenta H7

Get your hands
on new

Arduino Braccio++ RP2040
powered Robot Arm

There is nothing that excites us more than
getting our hands on new hardware, and so this

collaboration with Arduino has been a treat! Want
to experience the real deal yourself? Elektor has

stocked up the stores to accommodate all products
that are featured in this edition!

Guest edited by 39

Arduino Pro Portenta X8

Arduino Nano
The Arduino Nano is a small, complete, and
breadboard-friendly board based on the
ATmega328 packed in the smallest available
form factor of 18 × 45 mm!
www.elektor.com/17002

Arduino Nano RP2040
Connect
The Arduino Nano RP2040 Connect is an
RP2040-based Arduino board equipped with
Wi-Fi, Bluetooth, a microphone and a six-axis
smart motion sensor with AI capabilities.
www.elektor.com/19754

Arduino Nano 33 BLE Sense
Bring the power of AI to your pocket with the
more powerful nRF52840 processor and a
series of embedded sensors and the possi-
bility of running Edge Computing applica-
tions (AI).
www.elektor.com/19936

Portenta Vision Shield
(Ethernet)
The Portenta Vision Shield brings indus-
try-rated features to your Portenta. Profes-
sional computer vision, directional audio
detection, Ethernet, and JTAG for Arduino
Portenta.
www.elektor.com/19511

Portenta Vision Shield LoRa®
This Portenta hardware add-on will let you
run embedded computer vision applications,
connect wirelessly via LoRa® to the Arduino
Cloud or your own infrastructure.
www.elektor.com/20332

Portenta Breakout
Portenta Breakout board is designed to help
hardware engineers and makers to proto-
type and help test devices connections and
capacity within the Portenta family boards.
www.elektor.com/20341

Arduino Ethernet Shield 2

www.elektor.com/19941

Arduino Pro Portenta Max Carrier

Easily prototype your Portenta applications.
Deploy in zero time. Max Carrier transforms
Portenta modules into single-board computers
or reference designs that enable edge AI for
high-performance industrial, building automa-
tion and robotics applications.

www.elektor.com/20271

Arduino Pro Nicla Sense ME

A new standard for intelligent sensing
solutions.

www.elektor.com/20327

Portenta X8 is a powerful, indus-
trial-grade SOM with Linux OS
preloaded onboard, capable of
running device-independent software
thanks to its modular container archi-
tecture. It’s basically two industrial
products in one combining Ardui-
no’s availability of libraries/skills with
container-based Linux distribution.

www.elektor.com/20270

Arduino Uno Rev3

The classic high-performance, low-power
AVR® microcontroller. The Uno is the best
board to get started with electronics and
coding. The Uno is simply the most robust
board to enable you to start tinkering with
the Arduino platform.

www.elektor.com/15877

Arduino Make-Your-Uno Kit

A new kit including a DIY through-
hole UNO with all components to
build up your UNO and make your
own UNO-powered synth!

www.elektor.com/20330

Arduino Sensor Kit Base

www.elektor.com/19944

The
Classic

40 www.elektormagazine.comlektor

Paradisetronic.com

Check out any one of these resellers for your Arduino-related needs.

This guest-edited Arduino Edition of Elektor Magazine
was made possible with the support of these members

of the Arduino reseller community.

Check them out for your Arduino-related needs.

Supporting Arduino Resellers

www.gotron.be

www.paradisetronic.com www.whadda.com

www.hellasdigital.gr

www.techniscience.com

www.kubii.fr

www.tinytronics.nl

www.gotronic.fr

