
14 www.elektormagazine.comlektor

import machine
 from machine import

Pin

 import time

interrupt = False

def callback(pin):
 global interrupt

 interrupt = True

led = Pin(6, Pin.OUT)

 button = machine.Pin

(25,

machine.Pin.IN, maC and C++ have been the staple of Arduino software
development since Arduino‘s inception in the early
2000s. Thanks to a predefined program structure
with a setup() and loop() function, beginners to the
world of embedded software development have been
guided through setting up their board and executing
their application in a loop. Now there is a new langu-
age available. MicroPython is a lightly stripped-back
version of Python, an interpreted, general-purpose
programming language that targets microcontrollers.
The question is, why use an interpreted language on
hardware used for real-time applications?

“Because MicroPython‘s simplicity makes it well suited
for beginners, educators were one of the first to ask us
about it,“ explains Sebastian Romero, Head of Content
at Arduino.

C makes interaction with microcontroller registers
easier than with assembler, and object-oriented
programming (OOP) in C++ makes for more concise
code with fewer mistakes. However, parsing strings
is challenging, and there is no native support in the
language for handling today’s web data formats, such
as HTTP, JSON[1], or RegEx[2] (regular expression).
With today’s education revolving around interaction
with the Internet and web services, C/C++ has been
sidelined in favor of languages such as Python, which
make coding such applications more straightforward.

“As a result, if you’re a tutor teaching Python, you
prefer to stick with Python when the topic of micro-
controllers comes up,” says Sebastian.

Of course, it’s not just educators. Makers have had a
range of MicroPython-capable boards on offer from

MicroPython Enters
the World of Arduino

background

By Stuart Cording (Elektor)

MicroPython has made it to the world of Arduino,
providing the first significant alternative to
programming in C and C++. So, what’s all the fuss,
how easy is it to use, and who can benefit from
programming in this, for microcontrollers, relatively
new language? Elektor spoke to Sebastian Romero
(Head of Content, Arduino) to find out more.

About Sebastian Romero
(Head of Content @Arduino)
Sebastian Romero, head of content at Arduino,
is an interaction designer, educator and creative
technologist with a weakness for humans. With
his team, he is responsible for crafting enthralling
learning experiences to help millions of engineers,
designers, artists, hobbyists and students to
innovate.

Blob detection running on Arduino Portenta H7 in OpenMV.

Guest edited by 15

As might be expected, MicroPython requires a reaso-
nable amount of memory to run in order to support
uploaded code and its interpretation during execu-
tion. While 128 KB flash and 8 KB SRAM is enough, the
feature set would be so limited as to make for a poor
experience. Hence, most MicroPython boards settle
for a microcontroller with at least 256 KB flash and
16 KB SRAM. This also has the side effect of selecting
a device with a relatively powerful processor operating
at around 50 MHz or more that offers a respectable
range of peripherals.

“It constantly surprises me how much you can achieve
with just 16 KB of SRAM,” shares Sebastian - the
quote is from Jim Mussared, an Embedded Engineer
at micropython.org. “Most students, at least with
introductory-level projects, don’t need lots of heap.
Their projects typically grow in complexity due to
more code.”

other sources, such as the ESP32, Raspberry Pi Pico,
and pyboard, and the industry is increasingly looking
to MicroPython as well. The rapid growth in machine
learning (ML) is, in part, thanks to the existence of
libraries available for Python. With teams of engineers
competent in Python, few want to switch to C/C++
when they transfer their ML model and application to
a microcontroller, preferring to stick with one develop-
ment stack. The other issue is the workforce – it is
increasingly challenging to find C/C++ programmers,
while academia is churning out plenty of Python-com-
petent engineers.

MicroPython Vs. Python: What’s the
Difference?
Python started its life back in the late 1980s, designed
by Guido van Rossum[3]. Designed to be fun to use, it
also aims to be explicit rather than implicit, simple,
and result in readable code. In 2013, Damien George
successfully launched a Kickstarter [4] campaign to
deliver a version designed from the ground up for
microcontrollers along with the pyboard hardware
to run it. Micro Python, as it was named at the time,
promised a scripting language that would “allow
you to effortlessly blink LEDs, read voltages,” and
more. USB-enabled microcontrollers would appear
as a USB flash drive onto which code could be uploa-
ded. Alternatively, the device could appear as a serial
device, offering a command line known as REPL (read,
evaluate, print, loop).

Unlike C/C++ sketches
which must be compiled and
downloaded, MicroPython

can be executed immediately
after every change.

Image classification running on Arduino Nicla Vision in OpenMV.

16 www.elektormagazine.comlektor

core features that developers expect, such as a code
development window and a serial terminal. On top,
there is support for machine vision applications, such
as visualization of a frame buffer and a histogram
tool to visually analyse color and brightness ranges.
Furthermore it has a built-in tool to upload camera
pictures directly to Edge Impulse Studio to easily train
a machine learning model.

But, perhaps the greatest change lies with how code
is developed and deployed.

“Unlike C/C++ sketches that must be compiled and
uploaded, MicroPython can be executed immedia-
tely after every change. That speeds up development
significantly and brings the coding experience closer
to that of Python,” said Sebastian.

Another great feature is REPL, enabling short scripts
to be executed or individual functions to be tested
directly on the target controller.

Arduino Hardware Support for
MicroPython
In total, five Arduino boards currently support Micro-
Python: the Nano 33 BLE and Nano 33 BLE Sense, the
Nano RP2040 Connect, the Portenta H7 and Nicla
Vision. Most of the boards require a firmware update
to upload the MicroPython runtime into flash before
getting started. As we’ve come to expect, not only is
this process simple, but it is also well-documented[7].
Boards such as the Nano 33 have a preparation step that
uses the Arduino IDE, while the others are immedia-
tely recognized by OpenMV and programmed with the
necessary firmware.

The application is written as a Python script in OpenMV
that is uploaded to the target board. A single click on
the Play button is all that stands between the program-
mer and code execution.

What’s Next?
What is the future for Arduino now that MicroPython is
here? It is natural to worry that, with the introduction of
MicroPython, the traditional C/C++ sketch may become
a historical artifact. But this is neither desired nor the
plan. In scenarios where real time execution is a requi-
rement, C/C++ will still be the go to weapon.

“We are seeing growth in demand for Python support
on microcontrollers, especially in industry pioneers
working to develop ML applications who already use
a Python stack,” says Sebastian.

Such MicroPython projects mainly implement state
machines and evaluate sensor data.

But, the SRAM is not only used to store variables.
It also stores compiled bytecode, such as imported
modules, for execution by the MicroPython virtual
machine (VM). That can cause issues when handling
large data, such as strings, or creating and destroy-
ing many objects that leave insufficient SRAM to run
the compiler. However, once the code has reached a
mature state, bytecode can be precompiled and stored
in flash (in the filesystem) or implemented as frozen
bytecode to save even more SRAM.[5]

MicroPython is also fussier than Python when input-
ting code, demanding the correct use of spacing. Users
also quickly learn that some default features, such
as a full implementation of the standard library, are
unavailable due to limited hardware capabilities.

Development Environment for Arduino
MicroPython
The Arduino team selected the version of Micro-
Python maintained by OpenMV, as Arduino‘s new
camera-equipped devices benefit from the Machine
Vision features and the built-in support for Tensor
Flow Lite provided by OpenMV [6]. As a result, users
have a well-supported, mature platform and develop-
ment environment. OpenMV was created to support
machine vision applications on microcontrollers,
which aligns well with many users’ desire to create
image based ML applications.

OpenMV IDE (Integrated Development Environment)
provides the working area for MicroPython coders
rather than the traditional Arduino IDE. It offers the

Guest edited by 17

About the Author
Stuart Cording is an engineer and journalist with
more than 25 years of experience in the electronics
industry. You can find many of his recent Elektor
articles at www.elektormagazine.com/cording.
In addition to writing for Elektor, he hosts
the monthly livestream, Elektor Enginee-
ring Insights (www.elektormagazine.com/eei),
and he teaches Elektor Academy courses
(www.elektormagazine.com/elektor-academy).

Questions or Comments?
If you have technical questions, feel free to e-mail
the author at stuart.cording@elektor.com or the
Elektor editorial team at editor@elektor.com.

In fact, MicroPython support extends the available
options for Arduino users rather than replacing them.
Long term, C/C++ sketch developers should find suita-
ble boards in the same form factor that they’re using,
that also support MicroPython.

„For many of the classic Arduino boards, a MicroPython
implementation would have a very limited feature set
and hence isn‘t a reasonable option,“ Sebastian adds.

Users can also continue contributing to the success of
Arduino [8] with MicroPython as they have done in the
past. There are 15 years of contributed C/C++ code that
is still being maintained and used as drivers in combina-
tion with MicroPython. Bindings are then used to link
MicroPython with this base code. For those wishing
to get involved with MicroPython [10] development,
OpenMV is hosted on GitHub [9], a project to which
the Arduino team also contributes.

MicroPython can be seen as an addition to the current
Arduino ecosystem, with its adoption driven by the
success of Python as the language of preference for
ML applications and interacting with cloud services.
With microcontrollers increasingly hitting hundreds of
megahertz and offering heaps of memory, the move to
an interpreted language will be seen as an irrelevance
in many cases. Of course, there are exceptions where
real-time accuracy and precision are a must, and C/
C++ will always be there for those who require it. For
now, though, educators and students benefit signifi-
cantly, allowing knowledge of Python to be transferred
to microcontrollers (additionally they benefit from the
simplified syntax and readability of the code). At the
same time, industry developers can stick with a single
language for application development.

220415-01

[1] JSON, Wikipedia: https://en.wikipedia.org/wiki/JSON
[2] Regular Expression, Wikipedia:

https://en.wikipedia.org/wiki/Regular_expression
[3] Python, Wikipedia: https://en.wikipedia.org/wiki/Python_(programming_language)
[4] D. George, “Micro Python: Python for microcontrollers,” Kickstarter, 2016:

https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers
[5] “MicroPython on Microcontrollers”: https://docs.micropython.org/en/latest/reference/constrained.html
[6] OpenMV: https://openmv.io/
[7] K. Soderby, “Python with Arduino Boards,” Arduino, 2022:

https://docs.arduino.cc/learn/programming/arduino-and-python
[8] Arduino, GitHub: https://github.com/arduino
[9] OpenMV, GitHub: https://github.com/openmv
[10] Official uPython Repo: https://github.com/micropython/micropython

WEB LINKS

Related Products

Looking for the main items mentioned in this
article? Arduino and Elektor have you covered!

 > Arduino Nano 33 BLE Sense
elektormagazine.com/arduino-nano33sense

 > Arduino Nano RP2040 Connect
elektormagazine.com/arduino-nano-rp2040-
connect

 > Arduino Portenta H7
www.elektormagazine.com/arduino-portenta-h7

 > Arduino Nicla Vision
www.elektormagazine.com/arduino-nicla-vision

