
lektor post Project No. 60

lektor post | Project No. 60 | 1

which converts the 9 V battery voltage to a
stable 3 V for the circuit. C4 is used to sup-
press the signal produced by contact bounce
from pushbutton S1. This button is used to
start the dice rolling. When the circuit has not
been used for a while the display is turned off
to reduce power consumption and promote
longer battery life. The decimal point LED is
used to indicate that the circuit is on.
The complete dice kit is available from the
Elektor Store [1]. Included in the kit is a
pre-programmed microcontroller. The micro-
controller’s internal R/C oscillator generates
an 8-MHz clock signal. The internal 1:8 divider
is used to produce the 1-MHz controller clock
frequency. Accurate timing is not essential in
this application so an external crystal is not
necessary. R9 is used as a pull-up resistor to

This simple circuit simulates the rolling of
a dice (or ‘die’ to pedants). When the roll
button is pressed the display shows random
numbers in the range of one to six, after a
while the display settles with one number on
the LED display.
To make the project easier to build for begin-
ners we have ruled out the use of any SMD
components and used leaded components
throughout.

The dice circuit
The circuit in Figure 1 shows the connec-
tions between the pushbutton, the seven-seg-
ment display and the Atmel microcontroller
I/O pins. Resistors R1 to R8 are required to
limit the current flowing to each of the LED
display segments. IC2 is a simple regulator

Tiny-Dice
Electronic dice using an ATtiny2313

This simple electronic dice is an ideal starter project to introduce youngsters
and those still young at heart to the dark arts of microcontrollers and circuit
building. We take you step by step through the process. For your troubles
you will build a useful electronic dice. It will put an end to you scrabbling
around under the table to retrieve a dice that’s been carelessly tossed and
also an end to cheating… It landed on a six! It really did… yeah right.

By Florian Schäffer (Germany)

lektor post Project No. 60

lektor post | Project No. 60 | 2

The resulting value is then displayed. Unless
you can accurately synchronize your button-
ing pushing with the internal counter clock,
each number from one to six has an equal
probability of being displayed and can be con-
sidered random.
The displayed LED segments for the numbers
are represented in the code (0 to 9, only 1
to 6 are used). The program can of course
be changed to show other numbers or even
letters on the display.

Programming
As we already mentioned, the kit for this proj-
ect includes a pre-programmed microcontrol-
ler. There is no reason why you shouldn’t
change the program and re-program the chip,
after all that’s half the fun of hacking. Once
any changes have been made or new code
has been created using an editor program, it
will need to be converted into machine code
using a compiler. The resulting hex file can
then be transferred to the microcontroller’s
flash memory using a program such as AVR-
DUDE [3]. Here you will need an extra bit
of hardware. In addition to a programmer

tie the high-impedance Reset input up to a
logic High (i.e. to disable it).

The source code
The dice program shown in Listing 1 has
been produced using the free WinAVR tool
chain [2]. The GCC compiler contained in the
tool chain generated the machine code for the
ATtiny2313A controller. The basic principle of
operation is quite simple; the microcontroller
does not have a built-in random number gen-
erator so we use an 8-bit timer as a counter
which is configured to continually count up
to a maximum, overflow to zero and count
up again. The counter overflows about fifteen
times per second.
Each press of the pushbutton generates two
interrupts (one on pressing and one on releas-
ing). At every second interrupt a loop is ini-
tiated which shows on the display (with ever
increasing delay) numbers from 1 to 6 to sim-
ulate a dice rolling to a halt. Once this loop
is executed the value of the counter which is
running continually in the background is read
and a value from 0 to 6 is calculated (the
remainder value after dividing by 6, plus 1).

Figure 1. The circuit using
an Atmel microcontroller
looks… dicey.

SC39-11

LD1

CC CC

dp

10 1
a

9
b

7
c

5
d

4
e

2
f
g

8 3

6

ATtiny2313(A)

PB6/MISO

PD3/INT1

PB1/AIN1
PB0/AIN0

PD2/INT0
PB5/MOSI

PB7/SCK

PB3/OC1

PD0/RXD
PD1/TXD

PD6/ICP
PD5/T1
PD4/T0

XTAL1XTAL2

IC1
RST

PB4

PB2

VCC

GND
10

20

19
18

13
12

14
15
16
17

11
9
8
7

1

5

2 3

1

4

2
3
6

R1 39R
R2

39R
R3

39R
R4

39R
R5

39R
R6

39R
R7

39R

R8

39
R

R9
10

k

S1 C4

100n

C3

100n

+3V3

MCP1700-3002

IC2

C2

1u

C1

1u

+9V +3V

150311 - 11

in
te

rn
al

pu
llu

p

lektor post Project No. 60

lektor post | Project No. 60 | 3

Construction
Soldering: Should you be lucky enough to
have a soldering iron with an adjustable bit
temperature set it to around 350 to 370 °C
for classic rosin-cored, lead/tin solder which
produces reliable joints on DIY projects. Lead-
free solder will need a temperature of around
380 to 400 °C.
1. Insert the components into the PCB from

the component side. See the placement plan
near the parts list.

2. Make good contact with the soldering tip
onto the solder pad and the component lead.

3. After about half a second introduce the sol-
der so that it contacts the pad and lead.

4. When the solder melts and flows (should
take around one second) remove the solder
and then the iron from the joint.

5. Check the joint is good.
6. Clip off protruding component lead.
Component mounting sequence: Compo-
nent leads can be bent using flat nose pliers.
Always grip the lead on the component side
of the bend. Don’t make the bend too close
to the component body.
1. Resistors (arrange them so that the color

rings indicating their value can be read from
left to right).

2. Capacitors (check their values).
3. Pushbutton.
4. The IC socket (line up pin one with position

1 on the layout).
5. The seven segment display (check orienta-

such as the Atmel AVR-ISP MK2 you will need
a programming adapter with an IC socket;
it can be easily built using a small square
of perf board (Figure 2). This handy bit of
hardware will also be useful in the future for
reprogramming the microcontroller if you
need to make changes. Another aspect of
microcontroller programming is setting the
internal fuses which are used to configure
the microcontroller (i.e. to enable operation
with the internal oscillator for example). This
project just uses the default settings so it is
not necessary to worry about fuse settings
at the moment.

ATtiny2313(A)

PB6/MISO

PD3/INT1

PB1/AIN1
PB0/AIN0

PD2/INT0
PB5/MOSI

PB7/SCK

PB3/OC1

PD0/RXD
PD1/TXD

PD6/ICP
PD5/T1
PD4/T0

XTAL1XTAL2

IC1
RST

PB4

PB2

VCC

GND
10

20

19
18

13
12

14
15
16
17

11
9
8
7

1

54

2
3
6

R9

10
k

C3

100n

12
34
56

ISP

150311 - 12

MISO
SCK
RESET

MOSI

VCC

GND

Figure 2. The small programming adapter with a six
pin ISP connector.

Component List
Resistors
R1–R8 = 39Ω 5%, 0.25W
R9 = 10kΩ

Capacitors
C1,C2 = 1µF, 5mm pitch
C3,C4 = 100n, ceramic, 0.1’’ pitch

Semiconductors
IC1= ATtiny2313A, programmed
IC2 = MCP1700
LD1 = SC39 7-segment LED

Miscellaneous
S1 = pushbutton, momentary action
Clip-on connector for 9-V battery
201-way IC socket.
PCB # 150311-1 v1.0

Figure 3. How it should look when you’re finished.

150311-1
V2.0

150311-1
V2.0

lektor post Project No. 60

lektor post | Project No. 60 | 4

Web Links

[1] Web page for this article:
www.elektormagazine.com/articles

[2] WinAVR: http://sourceforge.net/projects/
winavr/

[3] AVRDUDE: www.nongnu.org/avrdude/

can begin with what is any engineer’s favorite
pastime — hardware debugging. Once every-
thing is okay you can carry on:
Disconnect the battery.
Orientate the pre-programmed IC1 over its
socket ensuring that the notch in the package
indicating pin #1 is nearest to the battery wire
connection point and not the other way round.
Check that the package leads line up with
all their positions in the socket. Apply light
pressure to correct the position of any lead.
Now carefully apply pressure evenly to the
top of the package using two fingers until the
IC is inserted. This may require some force.
Reconnect the battery.
Press the pushbutton and start gambling!

Now you’re ready to roll! Have fun!
 (150311)

tion of the decimal point lead).
6. IC 2 (make sure it’s correctly orientated).

Don’t mount this too close to the board.
Leave a gap of about 5 mm between the
component base and the board surface.
A component mounted close to the board
can be subjected to relatively large levels of
mechanical stress which may cause internal
damage to the IC.

7. The battery clip (feed the wires through the
strain relief holes first. Black wire to the GND
pad and red wire the 9 V pad).

Final assembly: After assembling all the
components on the board make a close
inspection of all the joints. Lead/tin solder
produces shiny joints; any crazing is an indi-
cator of a dry joint, check for missing solder
or solder bridges shorting two tracks together.
It’s also worth double checking battery con-
nection polarity and the IC socket orientation.
The finished board should look like Figure 3.
Now you can connect up the battery but don’t
plug in IC1 just yet. The decimal point LED
will light up to show that power is available to
the board. Should the LED not light then you

Listing 1.

#include <avr/io.h>
#include <util/delay.h> // defined _delay_ms()
#include <avr/interrupt.h> // IRQ handling

int main (void);

volatile uint8_t roll=0;
volatile uint16_t zeit=0;
const int8_t numbers [10] = // 0..9: Binary association of ports with numbers. Active high
{
/* A
 F B
 G
 E C
 D */
 0b00111111, // 0
 0b00000110, // 1
 0b01011011, // 2
 0b01001111, // 3
 0b01100110, // 4
 0b01101101, // 5
 0b01111101, // 6
 0b00000111, // 7
 0b01111111, // 8
 0b01100111, // 9

http://sourceforge.net/projects/winavr/
http://sourceforge.net/projects/winavr/
http://www.nongnu.org/avrdude/

lektor post Project No. 60

lektor post | Project No. 60 | 5

};

/**
 @brief IRQ Routine PCINT is called at IRQ. Allows the dice to roll
*/
ISR (PCINT_B_vect)
{
 uint8_t i=0;
 roll++; // How often has IRQ been triggered? PCINT only recognizes a toggle
 // IRQ is serviced twice per press.
 // Only need to start rolling once for every two
 if (roll == 2)
 {
 roll=0; // Start from zero
 for (i=1; i < 40; i++) // Simulates dice throwing
 {
 PORTD = numbers[(i % 6)+1]; // Output. Counter Modulo 6 = 0-5 => +1 = 1-6
 _delay_ms(i*3);
 }
 PORTD = numbers[(TCNT0 % 6)+1]; // Output. Timer value Modulo 6 = 0-5 => +1 = 1-6
 zeit=0; // counter to reset LEDs (zeit = time)
 }
}

/**
 @brief Main routine
 @param none
 @return End-Status
*/
int main(void)
{
 PORTD = 0; // PORTD all off
 DDRD = 0xFF; // PORTD defined as outputs
 DDRB &= ~(1 << DDB0); // B0 input
 PORTB |= (1 << PB0); // Pull Up active

 TCCR0B = (1 << CS02) | (1 << CS00); // 8 Bit Timer, Prescaler CLK/1024 => 1,000,000/256 = 3.9 kHz

 // => 0.000256 s/pulse => x256 > overflow occurs every

0.065s

 GIMSK |= (1 << PCIE); // PCIE IRQs enabled

 PCMSK |= (1 << PCINT0); // Assign IRQ to PB0

 sei(); // IRQs enabled

 while (1) // endless

 {

 // A loop to turn off the display after x secs

 for (zeit=0; zeit <=300; zeit++) // 300x100=30.000ms = 30s

 _delay_ms(100);

 PORTD = 0; // All segments off.

 }

 return 1; // never

}

