
One of the features of this project is its integration with the open-source
automation platform Home Assistant, enabling powerful automation
capabilities. For example, by measuring the soil moisture, one can
automate garden irrigation with this, which can relieve owners from
the burden of daily manual watering activities.

In this article, we will explore the setup process of this LoRaWAN
Sensor Node seen in Figure 1, from configuring a LoRaWAN gateway
and integrating with The Things Network (TTN) to visualizing data on
platforms like Datacake and Home Assistant. This project demonstrates
how affordable and adaptable technology can provide comprehensive
monitoring solutions, addressing the shortcomings of existing market
options and paving the way for broader applications.

System Overview
The core of this project is the Seeed Studio XIAO ESP32-C3 micro-
controller board. You can find this board and other modules used for
this project in the Elektor Store. (See the Related Products text box.)
The choice for the XIAO board was made due to its compact size and
sufficient I/O capabilities required for this project. To enhance its I/O
options, the Elektor eXpansion Board [1] was utilized. The eXpansion
Board extends the microcontroller’s functionality with six I2C connec-
tions. Although this project uses only one of these I2C connections,
the customizable nature of this sensor node allows for the addition of
more sensors if needed. In Figure 2 you can see the block diagram
of the project.

Remote environmental monitoring is crucial in addressing the
challenges of climate change and resource management. However,
many of the LoRa sensor nodes available on the market are costly
and lack customization options, making them impractical for specific
applications and remote areas. To overcome these limitations, this
project introduces a versatile, cost-effective LoRa Sensor Node. This
custom-built system provides an efficient solution for remote data
collection, utilizing long-range LoRa communication and solar power
to ensure continuous operation. By integrating customizable sensors,
the system offers flexibility for various environmental monitoring needs.

project

By Saad Imtiaz (Elektor)

This Sensor Node project, which uses
low-energy and long-range LoRa

data transmission, can be used for
remote environmental monitoring.
Utilizing the LoRa WIO E5 Module
and an ESP32-C3 XIAO controller
board, it integrates an SCD30 CO2
sensor and a soil moisture sensor,

all powered by solar energy. Data is
sent to The Things Network (TTN)
and can be accessed via Datacake
or Home Assistant for real-time

insights and automation. This guide
covers everything from setting up

your LoRaWAN gateway to seamless
integration with TTN, Datacake, and

Home Assistant.

LoRa-Based Data Transmission and
Power by Solar Cells

An Autonomous
Sensor Node

Figure 1: The Solar Powered LoRaWAN Sensor Node.

Source: Adobe Stock

6 September & October 2024 www.elektormagazine.com

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

For LoRa communication, the Seeed Studio E5 WIO LoRa Module
was chosen, which can be controlled by a host controller via a UART
connection and AT commands for sending data and configuration.
Its ease of setup and reasonable price made it a suitable option. This
module ensures reliable long-range data transmission. In my testing,
I was able to get the range of about 700 m in an urban environment
with some trees and houses in the middle. Keeping in mind that my
gateway was indoors next to a window, this is a good range, as like
any other wireless communication system, line of sight plays a big
role. The range can be much improved if the gateway is installed with
a high antenna at a height. Also a better antenna can be used on the
module itself to further improve its efficiency.

The solar charging system is powered by a Seeed Studio 3 W Solar
Panel, connected to Solar Power Management Module by Waveshare
which is basically an MPPT Tracker with some protection circuits. This
setup charges two 18650 batteries in parallel. The MPPT (Maximum
Power Point Tracking) Tracker plays a crucial role in optimizing the
power output from the solar panel. It continuously adjusts the electrical
operating point of the solar panel, ensuring it operates at its maximum
efficiency. After testing multiple MPPT trackers modules, the Wavesh-
are module turned out to be the most efficient and reliable for this
application.

For sensors, the SCD30 by Seeed Studio was selected for its high
accuracy in CO2 sensing. As the SCD30 is an NDIR sensor, which is
a “true” CO2 sensor, that will tell you the CO2 PPM (parts-per-million)
composition of ambient air. Another nice aspect of this sensor is that
it comes with an SHT31 temperature and humidity sensor already
built-in. Since the SCD30 is not designed for outdoor use as a module,
a custom 3D-printed Stevenson enclosure was created to protect from
any bad weather coming its way.

The soil moisture sensor used in this project is also from Seeed Studio.
Although it was selected due to its availability, it is not ideal for outdoor
applications as the connectors and PCB are not waterproof as seen
in Figure 3. In future iterations, a more suitable soil moisture sensor
could be considered.

The Seeed Studio XIAO ESP32-C3 microcontroller communicates with
the SCD30 sensor via I2C and the LoRa E5 module via UART. The soil
moisture sensor connects to an analog pin, and the battery voltage is

What Are LoRa, LoRaWAN, a Gateway, and TTN?
LoRa: LoRa (Long Range) is a wireless technology designed for
long-distance data transmission with minimal power consumption.
Operating in sub-gigahertz frequency bands (868 MHz in Europe,
915 MHz in North America), it can transmit data up to 15 km in
rural areas and 5 km in urban settings, ideal for IoT applications like
environmental monitoring and smart agriculture.

LoRaWAN: LoRaWAN (Long Range Wide Area Network) is a network
protocol on top of LoRa technology. It manages communication
between LoRa devices and gateways, supporting large-scale IoT
deployments with secure, bidirectional communication, adaptive
data rates, and efficient network usage.

Gateway: A LoRaWAN gateway bridges LoRa devices and the inter-
net. It receives data from LoRa devices and forwards it to a central
server via Wi-Fi, Ethernet, or cellular connections. Gateways typically
cover several kilometers and can handle multiple simultaneous device
transmissions.

TTN (The Things Network): The Things Network (TTN) is a global,
open-source LoRaWAN network. It offers infrastructure and tools for
connecting LoRaWAN devices, including device registration, data
routing, and integrations with platforms like Datacake and Home
Assistant. TTN is supported by a global community, making it an
excellent resource for deploying IoT solutions using LoRaWAN.

Voltage Divider 18650 3.7 V Batteries

XIAO ESP32C3
Elektor eXpansion Board v1.0

Waveshare Solar Power
Management Module

Solar Panel
6V 3W

LoRa E5 WIO
Module

Soil Sensor

SCD 30 & SHT31
Sensor

Figure 2: Block diagram of the project.
Figure 3: The soil sensor. As it has open pads and the JST connector, it can
cause a short circuit if it catches moisture.

 September & October 7

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

monitored using a voltage divider circuit. The circuit diagram of the
project can be seen in Figure 4.

Setting Up Your LoRaWAN Gateway
Before we dive into the more technical parts of the project, let’s start
with the core component: setting up your LoRaWAN gateway. As we
are using LoRaWAN to transmit sensor data, it’s essential to have
a LoRaWAN gateway nearby so that our sensor node can send its
collected data to the internet. While you might find some LoRaWAN
gateways in your vicinity, you may need to set up your own if none
are available.

Setting up your own LoRaWAN gateway is straightforward. First, you
need to acquire a gateway; I chose the LPS8v2 LoRaWAN Gateway
by Dragino. To use your gateway, you must connect it to a LoRaWAN
network. I opted for The Things Network (TTN), but you can also
use other networks like Helium, Datacake, and more, even use two
networks simultaneously.

Here’s a brief overview of the setup process:

> Connecting to WiFi: Start by powering on your LoRaWAN
gateway and connecting it to your home Wi-Fi network. This
enables the gateway to access the internet.

Solar
panel

MPPT
Tracker

240354-001

J5

J6

Qwicc

Qwicc

J13

J11

J12

J9 J10 J12

J1

J4

J7

J2

J3

+3V3

+3V3

XIAO ESP32 C3
Elektor eXpansion Board

BA
TT

 IN

+3V3 +3V3

So
il

Se
ns

or

J1
1
2
3
4

GND

GND

GND

GND

SDA

SDA

SDA

3V3

SCL

3V3

SCL

SCL

3V3

SCL
SDA
3V3

GND
3V3

G
N

D
3V

3

BA
TT

-

G
N

D
3V

3
SD

A
SC

L

3V3

3V3

3V3

3V3

3V3

SCL

D10

SDA

GND

GND

GND

GND

GND

5V

TX R
X

BA
TT

+

D1
D0

D3
D2

D8
D1

D9

BRD1

Lo
R

aW
AN

 E
5

M
od

ul
e

J2
1
2
3
4

SC
D

30

J3
1
2
3
4

R1

22
0k

R2

22
0k

SW1

D1

1N4001

BT1
1

2

SO
LA

R
 IN

1

2SC1

Figure 4: The schematic diagram of the project.

Figure 5: Adding your
gateway to The Things
Network.

8 September & October 2024 www.elektormagazine.com

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

> Registering on TTN: Next, go to The Things Network console
and create an account if you don’t already have one. Once logged
in, register your gateway by providing necessary details such
as the gateway’s EUI (a unique identifier for your gateway) and
selecting your region, as shown in Figure 5.

> Configuring the Gateway: Follow the instructions on TTN to
configure your gateway. This typically involves entering the
network settings, selecting the appropriate frequency plan, and
ensuring the gateway is set to communicate with TTN servers.

> Final Steps: After configuration, the gateway should connect to
TTN and be ready to receive data from your LoRa nodes. You can
monitor the status of your gateway on the TTN console to ensure
it is functioning correctly.

There are many detailed guides available online [2][3] that provide
step-by-step instructions for setting up various types of LoRaWAN
gateways. Following these guides can help you troubleshoot any issues
and ensure your gateway is correctly configured and connected. With
your LoRaWAN gateway set up, now let’s register our Sensor Node
to the Things Network in the next section.

Integrating Your Project with The Things Network
Once your gateway is set up, the next step is to integrate the LoRa E5
Module device with The Things Network (TTN) [4]. Begin by regis-
tering your device on the TTN console, first you have to create a new
application, and then add your device. To create an application, you
have to go to the TTN console and click on Create application, now
just give an ID and a name and then click on Create application, as
shown in Figure 6.

Now you need to register your device on the application you just
made. To do so, you go to your application and click on Register end
device. During this process, you’ll obtain essential credentials such as
the Device EUI, Application EUI, and App Key, as shown in Figure 7.
These credentials are critical for configuring your device to commu-
nicate with TTN and will be used in the Arduino code discussed later.

After registering your device on the TTN console, you need to set up
the payload format to ensure that TTN correctly interprets the data sent
from your device. TTN allows you to define a custom payload format-
ter using JavaScript, which decodes the raw data sent by your device.

Here is a payload formatter in JavaScript:

function Decoder(bytes, port) {
 var decoded = {};

 if (port === 8) {
 decoded.soilMoisture = (bytes[0] << 8) | bytes[1];
 decoded.temp = ((bytes[2] << 8) | bytes[3]);
 decoded.humi = (bytes[4] << 8) | bytes[5];
 decoded.co2 = (bytes[6] << 8) | bytes[7];
 decoded.battery = (bytes[8] << 8) | bytes[9];

 }
 return decoded;}

To implement this:

> Navigate to Payload Formats: In your TTN console, go to your
application and select the Payload Formats tab.

> Select Decoder Function: Choose the Decoder function type.
> Insert the Code: Copy and paste the provided JavaScript code

into the decoder function editor.
> Save the Changes: Save the changes to apply the decoder to

your application.

This decoder function processes the bytes received from your sensor
node, converting them into readable sensor values such as soil moisture,
temperature, humidity, CO2 levels, and battery voltage.

The Software
The software is programmed to collect and transmit sensor data
efficiently while managing power consumption through deep sleep
modes. Let’s break down the key components of the code and how
they work together.

The code starts by including necessary libraries and defining hardware
configurations. In the setup function, we initialize serial communication,
configure the sensors, and set up the LoRa module. This involves setting
parameters for the LoRa E5 module, including entering the App Key
generated on the TTN console (see below). In Listing 1, you can see
a minimized version of the code, as the entire code and all hardware
files can be accessed on the GitHub repository of this project [5].

Figure 6: Creating the application of TTN console.

Figure 7: Registering the end device on the application.

 September & October 9

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

Listing 1: Arduino Sketch (cutout).

#include <Arduino.h>
#include <SCD30.h>
#include <HardwareSerial.h>
#include <config.ino>

// Defining Hardware the second internal UART -
// Serial2 for the LoRaWAN E5 Module - Pin 9 and 10
HardwareSerial Serial2(1);

...
//*** Initializing variables ***//

void setup() {

 ...
 //*** Initializing Sensors, Serial 1 & Serial 2 ***//

 // Check if the AT command returns OK
 if (at_send_check_response("+AT: OK", 100, "AT\r\n")) {
 // Set the flag to indicate the LoRa module exists
 is_exist = true;
 // Send AT command to get AppEUI and check the response
 at_send_check_response("+ID: AppEui", 1000, "AT+ID\r\n");
 // Set the LoRa module to LWOTAA mode
 at_send_check_response("+MODE: LWOTAA", 1000, "AT+MODE=LWOTAA\r\n");
 // Set the data rate to EU868
 at_send_check_response("+DR: EU868", 1000, "AT+DR=EU868\r\n");
 // Set the channel number range
 at_send_check_response("+CH: NUM", 1000, "AT+CH=NUM,0-2\r\n");
 // Set the APP Key for authentication, replace with your generated APP Key from TTN
 at_send_check_response("+KEY: APPKEY", 1000,

 "AT+KEY=APPKEY,\"C2XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\"\r\n");
 // Enter your generated APP Key here.

 // Set the LoRa module to Class A
 at_send_check_response("+CLASS: C", 1000, "AT+CLASS=A\r\n");
 // Set the port number to 8
 at_send_check_response("+PORT: 8", 1000, "AT+PORT=8\r\n");
 // Delay to ensure all commands are processed
 delay(200);
 // Print confirmation that the LoRaWAN setup is complete
 Serial.println("LoRaWAN");
 // Set the flag to indicate the module has joined the network
 is_join = true;

 }
 else {
 is_exist = false;
 Serial.print("No LoRa E5 module found.\r\n");

 }
}

void loop() {
 getSensors();
 sendData();
 // Configure the wake-up source and duration for deep sleep
 esp_sleep_enable_timer_wakeup(10 * 60 * 1000000);

 // 10 minutes in microseconds
 // Enter deep sleep mode
 esp_deep_sleep_start();
}

10 September & October 2024 www.elektormagazine.com

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

on your TTN device live data section, as shown in Figure 8. You can
find the entire project repository on the GitHub [5] which includes all
the files for this project.

Power Consumption
Any system powered by batteries requires special attention to power
consumption, as no one wants to constantly recharge the system every
few days. Additionally, outdoor systems should require minimal mainte-
nance. Calculating power consumption, testing how much current each
component draws, and checking the average current for the system,
then calculating the Coulombs for calculation of the battery life and
more can be a bit hectic. To overcome these challenges, tools like
power profilers or DC energy analyzers can be used to get accurate
readings and analyze the power consumption of every component
in the entire system.

I recently got my hands on a Joulescope JS200 [6], and I must say, it
made the process significantly easier. Its compact size and user-friendly
interface make it ideal for all types of power consumption testing. Like
any engineer, my initial system didn’t have any power consumption
optimizations; the priority was ensuring everything worked together.
Optimization in code and power consumption comes next.

After the initial system build, I hooked it up with the Joulescope to see
what was going on, as seen in Figure 9. And the first thing I noticed
is the IR LED for the CO2 measurement in the SCD30 sensor takes
almost 68 mA every 2 s, resulting in an average current of 25.3 mA

The loop function is where the main operations happen. It collects
sensor data, sends it to TTN, and then puts the microcontroller into
deep sleep mode to save power. Using deep sleep mode significantly
reduces power consumption by turning off most of the microcontroller’s
functionalities, only waking it up to perform necessary tasks. By enter-
ing deep sleep, the XIAO ESP32-C3 consumes around 142 μA instead
of 8 mA, significantly extending the battery life. While in deep sleep
mode, the ESP32C3 itself consumes around 5 µA and the rest current
is consumed by the onboard voltage regular and battery management
IC.The microcontroller wakes up at regular intervals to collect and
transmit data before returning to deep sleep.

The getSensors() function reads values from the soil moisture sensor
and the SCD30 sensor. It also calculates the battery voltage using a
voltage divider and averages multiple readings for accuracy. By taking
several readings, the system ensures stable and precise measurements.

The sendData() function formats the collected sensor data into a
payload and sends it to TTN via the LoRa E5 module. It basically
converts the sensor data to a hexadecimal string to send it via LoRa,
as seen in the code snippet below. This function ensures that the
data is correctly formatted and transmitted via LoRa by first joining to
the nearest gateway and the sending sensor data, enabling real-time
monitoring. After sending the data, the LoRa E5 Module is placed in
a sleep mode to save power consumption.

// Prepare and send the sensor data
// as a hexadecimal string via LoRa
char cmd[128];
sprintf(cmd, "AT+CMSGHEX=
 \"%04X%04X%04X%04X%04X\"\r\n",
 (int)soilMoisturePercent, (int)temp,
 (int)humi, (int)co2, (int)battery);

The App Key
Before uploading the code, you have to add the App Key, which was
generated when you added your device on to the TNN application. It is
essential because it authenticates your device with TTN. It is entered in
the setup function and used in the at_send_check_response function.

at_send_check_response("+KEY: APPKEY", 1000,
"AT+KEY=APPKEY,\"XXXXXXXXXXXXXXXXX\"\r\n");
// Enter your generated APP Key here

This section of the code ensures that your device is registered and
authenticated, enabling it to send data to TTN. if all is done correctly,
you can see the forward uplink messages from your LoRa Sense Node

Figure 8: Data sent from
the Sensor Node being
displayed on the TTN
device overview section.

Figure 9: Power consumption of the project being tested on JouleScope.

 September & October 11

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

Figure 13: Screenshot of Multimeter mode in JouleScope.

Figure 10: The current
waveform of the SCD30
and LoRa Module.

over 30 s as seen in Figure 10. Upon reviewing the datasheet and the
provided library, I found that the default measurement interval was
set to 2 s. This was an easy fix as the measurement interval can be
controlled, so the IR LED only turns on when a measurement is needed.
This reduces the current spikes, lowering the average current draw.
However, the SCD30 sensor still draws about 4.5 mA even when idle,
and I couldn’t find a software-based solution to reduce this.

Next, I focused on the LoRa E5 WIO module, which also drew signifi-
cant current from the battery. During any LoRa operation, the module
takes up to 110 mA, but this is acceptable as it only is for a second. But
the main deal is to draw the least current from the battery when the
system is idle and the ESP32-C3 is in deep sleep mode, as while the
module is idle, it takes up to 10 mA. Which is a significant amount of
current when we have to power the system from a battery for a long
time. After going through some online resources, I found out that
there is a sleep mode AT command which can be used, to put the
module into sleep mode, reducing the idle current draw to 51.7 µA,
which was a substantial improvement. In Figure 11 you can see the
current waveform of the LoRa E5 module before and after the sleep
mode. The current draw of LoRa module can be further reduced to
even 3 µA, if the LDO on the module is removed.

During further testing, I found that the soil moisture sensor increased
the system’s current draw by up to 4 mA when detecting moisture.
This sensor uses capacitance to measure moisture, causing excessive
power consumption as the soil becomes more conductive. This also
leads to another issue: the sensor’s bare tracks act as an electroly-
sis device, causing corrosion and mineral deposits on the probes. To
mitigate the corrosion issue, a coated soil sensor can be used. However,
to eliminate the excessive current when the moisture level increases
requires cutting the power supply to the sensor when measurement
is not required, which is a more hardware-based solution. For the first
project version, I kept it simple, focusing on software-based optimi-
zations. Future versions will include more hardware-based solutions.

Battery Life
This moves us to the part of calculating the system’s battery life, which
was made significantly easy with the Joulescope. After all software-
based power optimizations, I connected the system to the Joulescope. In
Figure 12 you can see the current waveform of the entire system after

optimizations. Notice that the SCD30 turns the IR LED only during
the ESP32-C3 is awake, and then stops taking measurements after
the ESP32-C3 goes to deep sleep mode.

Using its accrue feature in its multimeter mode, I measured the average
current and Coulombs consumed by the system over 10 minutes,
with new sensor values being sent via LoRa every minute. As seen
in Figure 13, the average current was 19.10 mA, which is high for my
goal of a week-long operation on a single charge. Reducing the data
reading frequency to every 10 minutes lowered the average current
to 4.905 mA, making it acceptable for this application.

The number of coulombs consumed over time is needed to measure
the battery life, which was 28.1403 C in 1 h and 35 min (5700 s), this
was measured on the Joulescope. After that, we need to convert the
battery capacity of our batteries to coulombs. I was using two Li-ion
18650 batteries in parallel with each having the battery capacity of
1800 mAh.

12 September & October 2024 www.elektormagazine.com

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

Figure 12: Current
waveform of the entire
system, after power
optimizations.

Figure 11: Current consumption of LoRa E5 Modoule, before (left) and after (right) implementing the sleep function.

 September & October 13

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

Battery capacity in C (coulombs):

3.6 Ah × 3600 s/h = 12960 C

As the cut-off voltage is around 3.3 V, which is higher than the 3 V
(which is the voltage when the battery is completely drained), we have
to assume around the 80 to 90% usable capacity. Keeping in mind the
self discharge rate of the batteries, let’s use 85% as an approximation:

0.85 × 12960 C = 11016 C

Now let’s calculate the consumption rate in coulombs per second:

28.1403 C / 5700 s = 0.004936 C/s

And now, finally, to calculate the battery life by dividing the usable
battery capacity by the consumption rate to find the battery life in hours:

(11016 C / 0.004936 C/s) / 3600 s/h = 619.93 h.

Which is about 25 days of battery life on a single charge. Without
any power optimizations, the entire system was going to last only six
days! After I was satisfied with the power consumption after removing
some more unwanted LEDs, I prepped the system for deployment,
as seen in Figure 14.

Components and Enclosure
A custom 3D-printed enclosure [5] was designed to house all the
components of the LoRa Sensor Node project. The main enclosure was
designed to be weather-resistant which enclosed all the components as
seen in Figure 15. This required careful consideration of several factors
during its design. The enclosure ensures that all electrical connections
are waterproof, with special waterproof JST JWPF connectors used to
connect external sensors and the solar panel power to the Solar Power
Management Module. Epoxy was applied to fill any gaps between the
connectors and the enclosure housing.

A waterproof button was installed to reboot or turn the system on or
off, and a waterproof USB Type-C connector was used to upload new
firmware or debug any issues without opening the enclosure, as seen
in Figure 16. This port also allows for emergency battery charging if

the weather is bad for several days and the batteries die due to lack
of sunlight.

For the SCD30 temperature, humidity, and CO2 sensor, a custom
Stevenson enclosure as seen in Figure 17 was designed to protect
the sensor from rain, as it is not intended for outdoor use. This Steven-
son screen can also house other sensors, with a component holder
inside based on the Grove module PCB layout, allowing up to four
small Grove sensors to be mounted.

After installing the system as shown in Figure 18, its waterproof capabil-
ities were put to the test quite the very next day. Following a week of
heavy rainfall and a storm, the system remained dry inside, and all
components continued to function perfectly.

Integration with Datacake
Integrating your LoRa Sensor Node with Datacake [7] allows for
efficient data visualization and management. The process begins in
The Things Network (TTN) console, where you first log in and navigate
to your application. Under the Integrations tab, select Webhooks and
click on Add Webhook. Choose Datacake from the list of available

Figure 14: All the project components assembled and ready to be placed
into the enclosure.

Figure 15: Components placed inside the main enclosure with Solar Panel
mounted on the top.

Figure 16: Side view of the installation LoRa Sensor Node, showing the
waterproof USB Type connector and the JST waterproof connectors.

14 September & October 2024 www.elektormagazine.com

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

the device setup, provide details such as the Device EUI and link it
to The Things Network. This ensures that the data sent from TTN is
received by Datacake.

In the TTN console, navigate to your application and go to the Payload
Formats tab. For Datacake we’ll be using the same payload formater
to decode the data we get from TTN. So simply just paste the same
java script payload formatter code in the payload decoder section in
configuration tab of device in Datacake and save the changes once
the configuration is complete.

Now, return to Datacake and navigate to the dashboard of the device
you created. Add fields to display the values of the sensors, such as
soil moisture, temperature, humidity, CO2 levels, and battery status.
Set the appropriate data type for each field and map the TTN payload
fields to the corresponding Datacake fields as shown in Figure 19.
This mapping ensures that the data received from TTN is correctly
displayed on your Datacake dashboard.

webhook templates and configure it by entering the necessary details,
including your Datacake API Key, which can be found in your Datacake
account under the API section.

Next, create an account on Datacake if you haven’t already, and set
up a new device corresponding to your LoRa Sensor Node. During

Figure 18: LoRa Sensor Node deployed.

Figure 19: Datacake field configuration of sensor data received from TTN.

Figure 17: Low-angle view of the LoRa Sensor Node, showcasing the
Stevenson enclosure.

 September & October 15

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

TTN. Similarly, define the unit of measurement for CO2, humidity, and
soil moisture sensors. This configuration ensures that the sensor values
are displayed correctly on your Home Assistant dashboard.

By completing these steps, you can have a detailed and interactive card
on your Home Assistant dashboard, as seen in Figure 22, showing
all the sensor values your LoRa Sensor Node is sending. This setup
provides a robust and flexible solution for monitoring and analyzing
environmental data, leveraging the storage capabilities and custom-
izable interface of Home Assistant.

Future Improvements and Potential for Various
Applications
While the current LoRa Sensor Node system is effective, there is signif-
icant room for future improvements, particularly in power efficiency.
At idle, the system draws approximately 4.32 mA, which is quite high
for long-term battery-powered applications. By integrating an external
Real-Time Clock (RTC) with a power latch circuit, we can drastically
reduce the idle current draw to as low as 50 nA.

In this improved setup, the external RTC would be controlled by the
microcontroller, and the RTC would manage the power latch circuit.
This circuit would cut off power to the entire system when it’s not
actively sending sensor values and power it back up at set intervals.
This approach would significantly extend the battery life, making the
system more suitable for remote and long-term deployments. This
solution can be implemented in the next version of the eXpansion
board or as a separate module that can be added to the existing setup.
Watch out for an article about that!

Additionally, there are other hardware optimizations that can be
explored. For example, replacing high-power consumption compo-
nents with more efficient alternatives, optimizing the firmware to
ensure minimal power usage, and enhancing the efficiency of the
solar charging system are all potential improvements.

The modular nature of this system allows for the addition of various
sensors to extend its functionality. By integrating more sensors, this setup
can be used for a wide range of applications, including but not limited to:

> Environmental Monitoring: Adding sensors for air quality, light
intensity, and sound levels can make this system a comprehen-
sive environmental monitoring station.

> Agricultural Applications: Integrating soil pH, nutrient sensors,
and weather sensors can provide valuable data for precision
farming.

Finally, verify that the data from your LoRa Sensor Node is being trans-
mitted to TTN and forwarded to Datacake. Your Datacake dashboard
should now display real-time sensor values, allowing you to monitor
and analyze the data efficiently, as shown in Figure 20. This integra-
tion provides a powerful platform for visualizing and managing your
sensor data, making it easier to track environmental conditions and
make informed decisions based on the collected data.

Integration with Home Assistant
Integrating your LoRa Sensor Node with Home Assistant [8]
provides an excellent solution for long-term data storage and analy-
sis without the storage limitations imposed by platforms like Datacake.
Since Home Assistant runs on your home instance, there are no storage
space or data point limits, making it ideal for continuous monitoring.

To integrate Home Assistant with The Things Network (TTN), start by
generating an API Key in the TTN console. Navigate to your applica-
tion, go to the API Keys section, and create a new key with the neces-
sary permissions. Also, make sure you enable Storage Integration in
Integrations in the TNN application dashboard; otherwise the sensor
data won’t show up in Home Assistant.

Next, in Home Assistant, go to Devices & Services and add The Things
Network integration. When prompted, enter the name of your applica-
tion in TTN and the API Key you generated. This will link your Home
Assistant instance with your TTN application, enabling data flow from
your LoRa Sensor Node to Home Assistant.

To visualize the sensor values in a line graph as seen in Figure 21, you
need to define the unit of measurement for each sensor entity received
from The Things Network integration. Add the following entries to your
configuration.yaml file in Home Assistant:

 sensor.lora_sense_node_temperature:
 unit_of_measurement: "°C"
sensor.lora_sense_node_co2:
 unit_of_measurement: "ppm"
sensor.lora_sense_node_humidity:
 unit_of_measurement: "%"
sensor.lora_sense_node_soilmoisture:
 unit_of_measurement: "%"

In these entries, sensor.lora_sense_node_temperature is the entity
name where Home Assistant receives the temperature values from

Figure 20: Datacake dashboard showing all the sensor data collected.

Figure 21: History line graph in Home Assistant.

16 September & October 2024 www.elektormagazine.com

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

Related Products

> Seeed Studio XIAO ESP32C3
www.elektor.com/20265

> Seeed Studio Grove SCD30 CO2
www.elektor.com/20012

> Seeed Studio LoRa-E5 STM32WLE5JC
www.elektor.com/19956

> Seeed Studio Solar Panel (3 W)
www.elektor.com/19131

> Waveshare Solar Power Management Module
www.elektor.com/20488

> Dragino LoRa/LoRaWAN IoT Kit v3 (EU868)
www.elektor.com/20775

> Industrial Monitoring: Including sensors for gas leakage, vibra-
tion, and pressure can help in monitoring industrial environments
for safety and efficiency.

In conclusion, the current LoRa Sensor Node system provides a robust
and flexible platform for remote environmental monitoring. With future
improvements focused on power efficiency and additional sensor
integration, this system has the potential to be adapted for various appli-
cations, making it an invaluable tool for diverse monitoring needs.

240354-01

About the Author
Saad Imtiaz, Senior Engineer at Elektor, is a mechatronics engineer
with extensive experience in embedded systems and product
development. His journey has seen him collaborate with a diverse
array of companies, from innovative startups to established global
enterprises, driving forward-thinking prototyping and development
projects. With a rich background that includes a stint in the aviation
industry and leadership of a technology startup, Saad brings a
unique blend of technical expertise and entrepreneurial spirit to
his role at Elektor. Here, he contributes to project development in
both software and hardware.

Questions or Comments?
If you have questions about this article, feel free to email the
author at saad.imtiaz@elektor.com or the Elektor editorial team
at editor@elektor.com.

[1] Saad Imtiaz, “Elektor eXpansion Board v1.0,” Elektor 7-8/2024: https://elektormagazine.com/240250-01
[2] Setting up The Things Network V3 on Dragino: http://wiki.dragino.com/xwiki/bin/view/Main/Notes%20for%20TTN/
[3] Dragino LPS8N - Setup with The Things Network: https://www.thethingsindustries.com/docs/gateways/models/dragino-lps8/
[4] The Things Network: https://www.thethingsnetwork.org/
[5] LoRa Sensor Node Github Repository: https://github.com/ElektorLabs/lora-sensor-node
[6] Joulescope JS220: Precision Energy Analyzer: https://www.joulescope.com/products/js220-joulescope-precision-energy-analyzer
[7] Datacake: https://datacake.co/
[8] Home Assistant: https://www.home-assistant.io/

WEB LINKS

Figure 22: LoRa Sense
Node data being
displayed on the Home
Assistant dashboard.

www.elektormagazine.com/
wireless-communication

Visit our Wireless &
Communication page for
articles, projects, news, and
videos.

 September & October 17

Copyright Elektor 2024. Visit https://www.elektormagazine.com/membership

