In everything from computer processor chips to car engines to electric powerplants, the need to get rid of excess heat creates a major source of inefficiency. But new research points the way to a technology that might make it possible to harvest much of that wasted heat and turn it into usable electricity.

 

That kind of waste-energy harvesting might, for example, lead to cellphones with double the talk time, laptop computers that can operate twice as long before needing to be plugged in, or power plants that put out more electricity for a given amount of fuel, says Peter Hagelstein, co-author of a paper on the new concept appearing this month in the Journal of Applied Physics. Hagelstein, an associate professor of Electrical Engineering at MIT, says existing solid-state devices to convert heat into electricity are not very efficient. The new research, carried out with graduate student Dennis Wu as part of his doctoral thesis, aimed to find how close realistic technology could come to achieving the theoretical limits for the efficiency of such conversion.

 

Theory says that such energy conversion can never exceed a specific value called the Carnot Limit, based on a 19th-century formula for determining the maximum efficiency that any device can achieve in converting heat into work. But current commercial thermoelectric devices only achieve about one-tenth of that limit, Hagelstein says. In experiments involving a different new technology, thermal diodes, Hagelstein worked with Yan Kucherov, now a consultant for the Naval Research Laboratory, and coworkers to demonstrate efficiency as high as 40 percent of the Carnot Limit. Moreover, the calculations show that this new kind of system could ultimately reach as much as 90 percent of that ceiling.

 

Hagelstein, Wu and others started from scratch rather than trying to improve the performance of existing devices. They carried out their analysis using a very simple system in which power was generated by a single quantum-dot device — a type of semiconductor in which the electrons and holes, which carry the electrical charges in the device, are very tightly confined in all three dimensions. By controlling all aspects of the device, they hoped to better understand how to design the ideal thermal-to-electric converter.

 

A key to the improved throughput was reducing the separation between the hot surface and the conversion device. A recent paper by MIT professor Gang Chen reported on an analysis showing that heat transfer could take place between very closely spaced surfaces at a rate that is orders of magnitude higher than predicted by theory.  The new report takes that finding a step further, showing how the heat can not only be transferred, but converted into electricity so that it can be harnessed.

 

A company called MTPV Corp. (for Micron-gap Thermal Photo-Voltaics), founded by Robert DiMatteo SM ’96, MBA ‘06, is already working on the development of “a new technology closely related to the work described in this paper,” Hagelstein says.

 

While it may take a few years for the necessary technology for building affordable quantum-dot devices to reach commercialization, Hagelstein says, “there’s no reason, in principle, you couldn’t get another order of magnitude or more” improvement in throughput power, as well as an improvement in efficiency. “There’s a gold mine in waste heat, if you could convert it,” Hagelstein says. The first applications are likely to be in high-value systems such as computer chips, he says, but ultimately it could be useful in a wide variety of applications, including cars, planes and boats. “A lot of heat is generated to go places, and a lot is lost. If you could recover that, your transportation technology is going to work better.”

 

Source: David L. Chandler, MIT News Office