Wind drones lack theses massive structures. The tower is replaced by a thin tether. A wind drone with the power of the largest existing wind turbine (8 MW) requires a tether that is 2.5 inches/6 cm thick and would weigh less than one ton [3]. Only minimal foundations are required and the wings can be much lighter requiring only 1 to 10% of the material of the blades of a wind turbine [4]. The Google Makani 600 kW wing weighs below 2 tons including the tether and generators on board. A comparable 600 kW wind turbine weighs between 50 and 100 tons without foundation.

The required components for power generation are cheap in comparison: the costs for the electricity producing generator amount to less than 3% of total costs. Certainly, wind drones will need more and better sensors, processors and other control components, but these cost much less than the saved materials.
 

Stop Building Lever Arms


How can a wind drone save half the costs of a wind turbine? It is all about physics. A basic construction principle in engineering is to avoid a 90° force on an unsupported lever arm wherever possible. Large bridges are therefore supported by arches, columns, or suspension tethers. If parts cannot be supported they have to be made as short as possible.

Wind turbine engineers have done the opposite. Rightfully wanting to build ever larger and more efficient wind turbines they worked to increase the height of the towers and the length of the blades. Both are lever arms in a 90° angle to the wind force and they are not supported. Wind engineers would love to tether the tower and the blades. But it is not possible. The wind can blow from all directions, so the rotor has to be able to rotate around the tower and the blades have to spin freely. Nonetheless, wind engineers have excelled in building ever larger wind turbines. They hold the record for building the longest unsupported lever arms in the world. Undoubtedly a great achievement, but one that does not help saving material. The tether of a drone can be 1000 times lighter than the tower of a turbine simply because it avoids lever arms.
 
Crazy architecture, routine in wind turbine design: building huge lever arms. Pictures roughly true to scale; unsupported lever: Skywalk Grand Canyon 70 ft/21 m, wind turbine max: 720 ft/220 m (total height), 475 ft/145 m (tower), 260 ft/80 m (blade length)

Crazy architecture, routine in wind turbine design: building huge lever arms.
Pictures roughly true to scale; unsupported lever: Skywalk Grand Canyon 70 ft/21 m, wind turbine max: 720 ft/220 m (total height), 475 ft/145 m (tower), 260 ft/80 m (blade length)
 

Unleash the Drones


A simple physical fact cuts costs in half. Can other physical facts double the output? Since wind drones are not restricted by lever arms they can fly higher. They easily reach altitudes twice as high as normal wind towers (300m/1000ft instead of 150m/500ft). Physical fact: on average the wind speed increases with altitude. Physical fact: higher wind speed means more wind power. Physical fact: wind power increases with the cube of the wind speed. Double the wind speed therefore means wind power multiplied by 8 (2³).

Altogether these physical facts lead to the conclusion that there is no such thing as a “bad location” for wind drones. Wind drones only know good and excellent wind sites. They will find enough wind at almost any site.
 
Wind data of Dresden, Germany, forest site.
Wind data of Dresden, Germany, forest site


The impact of height differences can easily be illustrated by using wind data of Dresden (Germany) [5]. At the altitude of wind turbines it is a very poor wind location. Not even with the support of the generous German feed-in tariffs does it allow economic energy generation. At wind drone altitude, the wind speed is 60% higher (grey columns). This does not sound spectacular, but due to the cubed relationship between wind speed and power the available wind power almost quadruples (blue columns).

At this altitude Dresden becomes an extremely windy place with a wind force only matched by few wind turbine locations such as coasts, mountains or offshore locations. The world’s largest offshore wind park London Array, has a comparable average wind speed of 9.2 m/s at 100 m hub height. The reason is simple. Obstacles on land like forests, hills and buildings slow the wind down. Offshore winds partly owe their strength to the lack of obstacles. The same applies to high altitude winds: no obstacles to slow them down.

In addition, offshore or high altitude winds are steadier and therefore a more reliable source of electricity. Offshore wind turbines run at full capacity more often. Their idle periods per year are much shorter. Their so-called capacity factor is higher. They are therefore better suited to provide base load electricity. On average the output of offshore turbines is twice as high as that of onshore turbines with the same rated capacity [6]. But since offshore turbines cost two to three times as much as onshore turbines, the advantage is quickly outweighed. Offshore wind energy is still more costly than onshore wind [7]. According to research conducted by E.ON, Germany’s largest utility, offshore wind drones can boost offshore wind turbines’ high yields by another 50%. They can run at full capacity 70% per annum.

In summary, wind drones have lower production costs, they can access much stronger high altitude winds and therefore run at full capacity for greater amounts of time. The estimate of many airborne wind energy startups seems realistic: electricity for a quarter of the price of today’s wind energy.